forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
49 lines (42 loc) · 1.77 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from sklearn import preprocessing
import argparse
def getSimilarity(word1, word2, data, emb):
word_to_id = data["word_to_id"]
word1_emb = emb[word_to_id[word1],:]
word2_emb = emb[word_to_id[word2],:]
similarity = np.dot(word1_emb,word2_emb.T)/(np.abs(np.dot(word1_emb,word1_emb.T))*np.abs(np.dot(word2_emb,word2_emb.T)))
return similarity
def getSimilarityByEmbedding(emb1, emb2):
similarity = np.dot(emb1,emb2.T)/(np.abs(np.dot(emb1,emb1.T))*np.abs(np.dot(emb2,emb2.T)))
return similarity
def getTenClosestWords(search, vocab, data, emb):
topTen = list()
for word in vocab:
topTen.append([word, getSimilarity(search, word, data, emb)])
topTen.sort(key = lambda x: x[1],reverse=True)
return topTen[:10]
def analogy(word1, word2, word3, data, vocab, emb):
word_to_id = data["word_to_id"]
word4_emb = emb[word_to_id[word1],:] - emb[word_to_id[word2],:] + emb[word_to_id[word3],:]
topTen = list()
for word in vocab:
topTen.append([word, getSimilarityByEmbedding(word4_emb,emb[word_to_id[word]])])
topTen.sort(key = lambda x: x[1],reverse=True)
return topTen[:10]
def plotEmbeddingsIn2D(emb, data):
plt.figure(figsize=(10,20))
word_to_id = data["word_to_id"]
vocab = list(data["vocab"])[:100]
model = TSNE(n_components=2, random_state=0)
np.set_printoptions(suppress=True)
vectors = model.fit_transform(emb)
normalizer = preprocessing.Normalizer()
vectors = normalizer.fit_transform(vectors, 'l2')
fig, ax = plt.subplots()
for word in vocab:
print(word, vectors[word_to_id[word]][1])
ax.annotate(word, (vectors[word_to_id[word]][0],vectors[word_to_id[word]][1] ))
plt.show()