forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
174 lines (137 loc) · 6.43 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#standard libraries
import os
from collections import OrderedDict
import argparse
from tqdm.notebook import tqdm
from torch.utils.tensorboard import SummaryWriter
# torch libraries
import torch
#import written libraries
from utils import weights_init_normal,real_data_target,fake_data_target,log_images
from dataset import get_loader
from models import Generator,Discriminator
def parse_args():
parser = argparse.ArgumentParser()
# Model config
parser.add_argument('--in_channels', type=int, default=3,help = 'number of channels in input image')
# optim config
parser.add_argument('--epochs', type=int, default=15,help='nmber of epochs to train for')
parser.add_argument('--train_batch_size', type=int, default=64,help='batch size of train set')
parser.add_argument('--base_g_lr', type=float, default=2.5e-4,help='learning rate for generator')
parser.add_argument('--base_d_lr', type=float, default=1e-4,help='learning rate for discriminator')
parser.add_argument('--beta_1', type=float, default=0.5,help='beta-1 for optmizers')
parser.add_argument('--beta_2', type=float, default=0.999,help='beta-2 for optmizers')
parser.add_argument('--lamda_adv', type=float, default=0.001,help='lamda_adv in the loss function')
#data_config
parser.add_argument('--dataset_name', type=str,default='img_align_celeba',help='dataset name')
parser.add_argument('--mask_size', type=int,default=64,help='size of mask applied to images')
#run_config
parser.add_argument('--device', type=str,default='cpu',help='device on which model is to be run on')
parser.add_argument('--num_workers', type=int, default=5,help='standard num_workers argument in dataloader')
parser.add_argument('--test_batch_size', type=int, default=16,help='batch size of test set')
parser.add_argument('--writer_directory', type=str,default='./runs/',help='writing directory for tensorboard')
parser.add_argument('--label_smoothing', type=bool, default=False,help='implements label smoothing if set as "True"')
parser.add_argument('--save_frequency', type=int, default=500,help='interval for logging images in tensorboard')
args = parser.parse_args()
optim_config = OrderedDict([
('epochs', args.epochs),
('train_batch_size', args.train_batch_size),
('base_g_lr', args.base_g_lr),
('base_d_lr', args.base_d_lr),
('beta_1', args.beta_1),
('beta_2', args.beta_2),
('lamda_adv', args.lamda_adv),
])
run_config = OrderedDict([
('device', args.device),
('num_workers', args.num_workers),
('label_smoothing', args.label_smoothing),
('test_batch_size',args.test_batch_size),
('writer_directory',args.writer_directory),
('save_frequency',args.save_frequency),
])
data_config = OrderedDict([
('dataset_name', args.dataset_name),
('mask_size', args.mask_size),
])
model_config = OrderedDict([
('in_channels',args.in_channels),
])
config = OrderedDict([
('optim_config', optim_config),
('data_config', data_config),
('run_config', run_config),
('model_config', model_config),
])
return config
config = parse_args()
run_config = config['run_config']
optim_config = config['optim_config']
device = run_config['device']
model_config = config['model_config']
dataset_name = config['data_config']['dataset_name']
nc = model_config['in_channels']
mask_size = config['data_config']['mask_size']
lamda_adv = optim_config['lamda_adv']
#get dataloaders
dataloader,test_dataloader = get_loader(optim_config['train_batch_size'],run_config['test_batch_size'],mask_size,dataset_name,run_config['num_workers'])
#loss functions
adversarial_loss = torch.nn.BCEWithLogitsLoss()
pixelwise_loss = torch.nn.MSELoss()
#models
generator = Generator(nc).to(device)
discriminator = Discriminator(nc).to(device)
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
#optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=optim_config['base_g_lr'], betas=(optim_config['beta_1'],optim_config['beta_2']))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=optim_config['base_d_lr'], betas=(optim_config['beta_1'],optim_config['beta_2']))
#run configurations
epochs = optim_config['epochs']
writer = SummaryWriter(run_config['writer_directory'])
#training loop
for epoch in range(epochs):
#load tqdm object
t = tqdm(dataloader, desc='epoch:{} g_loss:{:.4f} d_loss:{:.4f}'.format(epoch, 0.0, 0.0), leave=True)
for i, (imgs, masked_imgs, masked_parts) in enumerate(t):
# Adversarial ground truths
valid = real_data_target(imgs.size(0),'cuda')
fake = fake_data_target(imgs.size(0),'cuda')
imgs = imgs.to(device)
masked_imgs = masked_imgs.to(device)
masked_parts = masked_parts.to(device)
#current step used for logging
current_step = epoch*len(dataloader) + i
#train generator
optimizer_G.zero_grad()
gen_parts = generator(masked_imgs)
#calculate loss
g_adv = adversarial_loss(discriminator(gen_parts), valid)
g_pixel = pixelwise_loss(gen_parts, masked_parts)
g_loss = lamda_adv* g_adv + (1-lamda_adv)* g_pixel
#update gradients
g_loss.backward()
optimizer_G.step()
#train discriminator
optimizer_D.zero_grad()
#calculate loss
real_loss = adversarial_loss(discriminator(masked_parts), valid)
fake_loss = adversarial_loss(discriminator(gen_parts.detach()), fake)
d_loss = 0.5 * (real_loss + fake_loss)
#update weights
d_loss.backward()
optimizer_D.step()
#log to tensorboard
writer.add_scalar('real loss',real_loss,current_step)
writer.add_scalar('fake loss',fake_loss,current_step)
writer.add_scalar('total d loss',d_loss,current_step)
writer.add_scalar('adversarial loss',g_adv,current_step)
writer.add_scalar('pixelwise loss',g_pixel,current_step)
writer.add_scalar('total g loss',g_loss,current_step)
#update tqdm bar
if i% 50==0:
t.set_description('epoch:{} g_loss:{:.4f} d_loss:{:.4f}'.format(epoch, g_loss.item(), d_loss.item()))
t.refresh()
if i% run_config['save_frequency'] ==0:
generator.eval()
log_images(writer,test_dataloader,mask_size,device,generator,current_step)