forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
77 lines (56 loc) · 2.14 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import torch.nn as nn
#Generator model
class Generator(nn.Module):
def __init__(self,nc):
super(Generator,self).__init__()
def Downsample(in_channels,out_channels,normalize = True):
layer = [nn.Conv2d(in_channels,out_channels,kernel_size=4,stride=2,padding=1)]
if normalize :
layer.append(nn.BatchNorm2d(out_channels))
layer.append(nn.LeakyReLU(0.2,inplace=True))
return layer
def Upsample(in_channels,out_channels,normalize = True):
layer = [nn.ConvTranspose2d(in_channels,out_channels,kernel_size= 4,stride=2,padding=1)]
if normalize :
layer.append(nn.BatchNorm2d(out_channels))
layer.append(nn.LeakyReLU(0.2,True))
return layer
self.main = nn.Sequential(
*Downsample(nc,64,normalize=False),
*Downsample(64,64),
*Downsample(64,128),
*Downsample(128,256),
*Downsample(256,512),
nn.Conv2d(512,100,4), # Bottleneck
nn.ConvTranspose2d(100,512,4),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2,True),
*Upsample(512,256),
*Upsample(256,128),
*Upsample(128,64),
*Upsample(64,nc,normalize=False),
nn.Tanh()
)
def forward(self,x):
return self.main(x)
#Discriminator model
class Discriminator(nn.Module):
def __init__(self,nc):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, normalize):
layers = [nn.Conv2d(in_filters, out_filters, 4, 2, 1)]
if normalize:
layers.append(nn.BatchNorm2d(out_filters))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
layers = []
layers.extend(discriminator_block(nc,64,False))
layers.extend(discriminator_block(64,128,True))
layers.extend(discriminator_block(128,256,True))
layers.extend(discriminator_block(256,512,True))
layers.append(nn.Conv2d(512,1,4))
self.model = nn.Sequential(*layers)
def forward(self, img):
x = self.model(img)
return x.view(x.size(0),-1)