forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
140 lines (113 loc) · 5.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import torch
import random
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from PIL import Image
import numpy as np
import time
import matplotlib.pyplot as plt
from model import VDSR
from util import *
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--batchSize", type=int, default=128, help="Training batch size. Default 128")
parser.add_argument("--Epochs", type=int, default=50, help="Number of epochs to train for")
parser.add_argument("--lr", type=float, default=0.1, help="Learning Rate. Default=0.1")
parser.add_argument("--step", type=int, default=10,
help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=10")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number")
parser.add_argument("--cuda", action="store_true", help="Use cuda?")
parser.add_argument("--clip", type=float, default=0.4, help="Clipping Gradients. Default=0.4")
parser.add_argument("--threads", type=int, default=1, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum, Default: 0.9")
parser.add_argument("--weight-decay", default=1e-4, type=float, help="Weight decay, Default: 1e-4")
parser.add_argument("--pretrained", default='', type=str, help="Path to pretrained model")
parser.add_argument("--train_data", default="train.h5", type=str, help="Path to preprocessed train dataset")
parser.add_argument("--test_data", default="./assets/", type=str, help="Path to file containing test images")
args = parser.parse_args()
cuda = args.cuda
if cuda:
print("=> use gpu id: '{}'".format(0))
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
if not torch.cuda.is_available():
raise Exception("No GPU found or Wrong gpu id, please run without --cuda")
cudnn.benchmark = True
train_set = prepareDataset(args.train_data)
train_data = DataLoader(dataset=train_set, num_workers=args.threads, batch_size=args.batchSize, shuffle=True)
model = VDSR()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
criterion = nn.MSELoss(size_average=False)
if cuda:
model = model.cuda()
criterion = criterion.cuda()
if args.pretrained:
if os.path.isfile(args.pretrained):
print("=> loading model '{}'".format(args.pretrained))
checkpoint = torch.load(args.pretrained)
args.start_epoch = checkpoint["epoch"] + 1
model.load_state_dict(checkpoint['model'].state_dict())
else:
print("No model found at '{}'".format(opt.pretrained))
train(args.start_epoch, train_data, optimizer, model, criterion, args.Epochs, args)
eval(model, args)
def train(start_epoch, dataloader, optimizer, model, criterion, Epoch, args):
for epoch in range(start_epoch, Epoch+1):
lr = adjust_learning_rate(optimizer, epoch - 1, args)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
model.train()
for i, batch in enumerate(dataloader, 1):
input, target = Variable(batch[0]), Variable(batch[1], requires_grad=False)
if args.cuda:
input = input.cuda()
target = target.cuda()
loss = criterion(model(input), target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
if i % 100 == 0:
print("Epoch[{}]({}/{}): Loss: {:.10f}".format(epoch, i, len(dataloader), loss.item()))
if epoch % 2 == 0:
save_checkpoint(model, epoch)
def eval( model, args):
im_gt = Image.open(args.test_data+"butterfly_GT.bmp").convert("RGB")
im_b = Image.open(args.test_data+"butterfly_GT_scale_4.bmp").convert("RGB")
# Convert the images into YCbCr mode and extraction the Y channel (for PSNR calculation)
im_gt_ycbcr = np.array(im_gt.convert("YCbCr"))
im_b_ycbcr = np.array(im_b.convert("YCbCr"))
im_gt_y = im_gt_ycbcr[:, :, 0].astype(float)
im_b_y = im_b_ycbcr[:, :, 0].astype(float)
im_b = Variable(torch.from_numpy(im_b_y/255.).float())
im_b = im_b.view(1, -1, im_b.shape[0], im_b.shape[1]).cuda()
start_time = time.time()
out = model(im_b)
print("Time taken: ", time.time()-start_time)
out = out.cpu()
out_y = out.data[0].numpy().astype(np.float32)
out_y = out_y * 255.
out_y[out_y > 255.] = 255.
out_y[out_y < 0] = 0
out_y = out_y[0,:,:]
psnr_org = computePSNR(im_gt_y, im_b_y)
psnr_score = computePSNR(im_gt_y, out_y)
print(" PSNR score for our predicted image is ", psnr_score)
print(" Improvement from blur image is ",psnr_score-psnr_org)
out_img = colorize(out_y, im_b_ycbcr)
im_gt = Image.fromarray(im_gt_ycbcr, "YCbCr").convert("RGB")
im_b = Image.fromarray(im_b_ycbcr, "YCbCr").convert("RGB")
plt.imshow(im_gt)
plt.savefig("GT.png")
plt.show()
plt.imshow(im_b)
plt.savefig("Input.png")
plt.show()
plt.imshow(out_img)
plt.savefig("img.png")
plt.show()
if __name__ == '__main__':
main()