|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +from random import randint, shuffle |
| 4 | +from random import random as rand |
| 5 | +from pytorch_pretrained_bert.tokenization import BertTokenizer |
| 6 | +import random |
| 7 | +import math |
| 8 | +import os |
| 9 | +import argparse |
| 10 | +import model_pretrain |
| 11 | +import pandas as pd |
| 12 | +from utils import load |
| 13 | + |
| 14 | +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 15 | + |
| 16 | +parser = argparse.ArgumentParser() |
| 17 | +# model config |
| 18 | +parser.add_argument('--dim', type=int, default=768) |
| 19 | +parser.add_argument('--max_len', type=int, default=512) |
| 20 | +parser.add_argument('--heads', type=int, default=12) |
| 21 | +parser.add_argument('--n_segs', type=int, default=2) |
| 22 | + |
| 23 | +parser.add_argument('--pretrain_file', type=str, required=True) |
| 24 | +parser.add_argument('--dataset', type=str, required=True) #COLA dataset in csv format |
| 25 | +parser.add_argument('--epochs', type=int, default=4) |
| 26 | +parser.add_argument('--batch_size', type=int, default=32) |
| 27 | +parser.add_argument('--lr', type=float, default=0.00002) |
| 28 | +parser.add_argument('--beta1', type=float, default=0.9) |
| 29 | +parser.add_argument('--beta2', type=float, default=0.999) |
| 30 | +parser.add_argument('--decay', type=float, default=0.01) |
| 31 | + |
| 32 | +args = parser.parse_args() |
| 33 | + |
| 34 | +df = pd.read_csv(args.dataset, delimiter='\t', header=None, names=['sentence_source', 'label', 'label_notes', 'sentence']) |
| 35 | +sentences = df.sentence.values |
| 36 | +labels = df.label.values |
| 37 | + |
| 38 | +train_sent=sentences[0:6000] |
| 39 | +train_label=labels[0:6000] |
| 40 | +test_sent=sentences[6000:] |
| 41 | +test_label=labels[6000:] |
| 42 | + |
| 43 | +class PreprocessCola(): |
| 44 | + """ Pre-processing steps for pretraining transformer """ |
| 45 | + def __init__(self, max_len=512): |
| 46 | + super().__init__() |
| 47 | + |
| 48 | + self.indexer = BertTokenizer.from_pretrained('bert-base-uncased') |
| 49 | + self.max_len = max_len |
| 50 | + |
| 51 | + def __call__(self,data): |
| 52 | + token,label=data |
| 53 | + #truncate_tokens_pair(tokens_a, tokens_b, self.max_len - 3) |
| 54 | + |
| 55 | + # Add Special Tokens |
| 56 | + tokens = ['[CLS]'] + token + ['[SEP]'] |
| 57 | + segment_ids = [0]*(len(token)+2) |
| 58 | + input_mask = [1]*len(tokens) |
| 59 | + |
| 60 | + # Token Indexing |
| 61 | + input_ids = self.indexer.convert_tokens_to_ids(tokens) |
| 62 | + |
| 63 | + |
| 64 | + # Zero Padding |
| 65 | + n_pad = self.max_len - len(input_ids) |
| 66 | + input_ids.extend([0]*int(n_pad)) |
| 67 | + segment_ids.extend([0]*int(n_pad)) |
| 68 | + input_mask.extend([0]*int(n_pad)) |
| 69 | + |
| 70 | + # Zero Padding for masked target |
| 71 | + |
| 72 | + |
| 73 | + return (input_ids, segment_ids, input_mask,label) |
| 74 | + |
| 75 | +class DataLoaderCola(): |
| 76 | + """ Load sentence pair from corpus """ |
| 77 | + def __init__(self, sent,label, batch_size, max_len, short_sampling_prob=0.1): |
| 78 | + super().__init__() |
| 79 | + self.sent=sent |
| 80 | + self.label=label |
| 81 | + self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
| 82 | + self.max_len = max_len |
| 83 | + self.short_sampling_prob = short_sampling_prob |
| 84 | + self.batch_size = batch_size |
| 85 | + self.preproc= PreprocessCola(max_len) |
| 86 | + |
| 87 | + |
| 88 | + def __iter__(self): # iterator to load data |
| 89 | + k=0 |
| 90 | + while True: |
| 91 | + batch = [] |
| 92 | + for i in range(self.batch_size): |
| 93 | + |
| 94 | + len_tokens = randint(1, int(self.max_len / 2)) \ |
| 95 | + if rand() < self.short_sampling_prob \ |
| 96 | + else int(self.max_len / 2) |
| 97 | + |
| 98 | + |
| 99 | + tokens =self.tokenizer.tokenize( self.sent[k]) |
| 100 | + label=self.label[k] |
| 101 | + k=k+1 |
| 102 | + data = (tokens,label) |
| 103 | + data=self.preproc(data) |
| 104 | + if k>len(sentences): |
| 105 | + return |
| 106 | + |
| 107 | + batch.append(data) |
| 108 | + |
| 109 | + batch_tensors = [torch.tensor(x, dtype=torch.long) for x in zip(*batch)] |
| 110 | + yield batch_tensors |
| 111 | + |
| 112 | +data_train=DataLoaderCola(train_sent,train_label,args.batch_size,args.max_len) |
| 113 | +data_test=DataLoaderCola(test_sent,test_label,args.batch_size,args.max_len) |
| 114 | + |
| 115 | +# Function to calculate the accuracy of our predictions vs labels |
| 116 | +def flat_accuracy(preds, labels): |
| 117 | + pred_flat = np.argmax(preds, axis=1).flatten() |
| 118 | + labels_flat = labels.flatten() |
| 119 | + return np.sum(pred_flat == labels_flat) / len(labels_flat) |
| 120 | + |
| 121 | +class ColaClassifier(nn.Module): |
| 122 | + def __init__(self,dim,heads,max_len,n_seg): |
| 123 | + super().__init__() |
| 124 | + self.allenc=model_pretrain.AllEncode(dim,heads,max_len,n_seg) |
| 125 | + self.fc1=nn.Linear(dim,dim) |
| 126 | + self.tanh=nn.Tanh() |
| 127 | + self.fc2=nn.Linear(dim,2) |
| 128 | + |
| 129 | + def forward(self,batch): |
| 130 | + input_ids, segment_ids, input_mask,label=batch |
| 131 | + out=self.allenc(input_ids,input_mask,segment_ids) |
| 132 | + |
| 133 | + out1=self.fc1(out[:,0]) |
| 134 | + out1=self.tanh(out1) |
| 135 | + out1=self.fc2(out1) |
| 136 | + return out1 |
| 137 | + |
| 138 | +modelcls=ColaClassifier(args.dim,args.heads,args.max_len,args.n_segs).to(device) |
| 139 | + |
| 140 | +criterion=nn.CrossEntropyLoss().to(device) |
| 141 | +optimizer = torch.optim.AdamW(modelcls.parameters(), lr=args.lr, betas=(args.beta1,args.beta2), weight_decay=0.01) |
| 142 | + |
| 143 | +load(args.pretrain_file,modelcls.allenc) |
| 144 | + |
| 145 | +def loss_func(model,batch): |
| 146 | + input_ids, segment_ids, input_mask,label=batch |
| 147 | + clsf=model(batch) |
| 148 | + lossclf=criterion(clsf,label) |
| 149 | + return lossclf |
| 150 | + |
| 151 | +for epoch in range(args.epochs): |
| 152 | + train_loss=0 |
| 153 | + for i,batch in enumerate(data_train): |
| 154 | + batch = [t.to(device) for t in batch] |
| 155 | + optimizer.zero_grad() |
| 156 | + loss=loss_func(modelcls,batch) |
| 157 | + train_loss += loss.item() |
| 158 | + loss.backward() |
| 159 | + optimizer.step() |
| 160 | + loss_list.append |
| 161 | + |
| 162 | + avg_train_loss = train_loss / len(data_train) |
| 163 | + print(" Average training loss: {0:.2f}".format(avg_train_loss)) |
| 164 | + |
| 165 | + modelcls.eval() |
| 166 | + total_eval_accuracy = 0 |
| 167 | + |
| 168 | + for batch in data_test: |
| 169 | + batch = [t.to(device) for t in batch] |
| 170 | + input_ids, segment_ids, input_mask,label=batch |
| 171 | + with torch.no_grad(): |
| 172 | + clsf=modelcls(batch) |
| 173 | + |
| 174 | + total_eval_accuracy += flat_accuracy(clsf, label) |
| 175 | + |
| 176 | + avg_val_accuracy = total_eval_accuracy / len(dat_test) |
| 177 | + print(" Accuracy: {0:.2f}".format(avg_val_accuracy)) |
| 178 | + |
| 179 | + |
| 180 | + |
| 181 | + |
| 182 | + |
| 183 | + |
| 184 | + |
| 185 | + |
0 commit comments