-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathutils.py
251 lines (195 loc) · 7.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import numpy as np
import torch
import shutil
import torchvision.transforms as transforms
from torch.autograd import Variable
from sklearn.metrics import f1_score
import logging
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def average_mF1(model, loader, opt):
model.eval()
count = 0
micro_f1 = 0.
with torch.no_grad():
for i, data in enumerate(loader):
data = data.to(opt.device)
out = model(data)
num_node = len(data.x)
micro_f1 += f1_score(data.y.cpu().detach().numpy(),
(out > 0).cpu().detach().numpy(), average='micro') * num_node
count += num_node
micro_f1 = float(micro_f1) / count
return micro_f1
def mF1(output, target):
micro_f1 = f1_score(target.cpu().detach().numpy(),
(output > 0).cpu().detach().numpy(), average='micro')
return micro_f1
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def _data_transforms_cifar10(args):
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
return train_transform, valid_transform
def count_parameters_in_MB(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path):
model.load_state_dict(torch.load(model_path))
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob)
x.div_(keep_prob)
x.mul_(mask)
return x
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.makedirs(path)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
def normalize(v):
min_v = torch.min(v)
range_v = torch.max(v) - min_v
if range_v > 0:
normalized_v = (v - min_v) / range_v
else:
normalized_v = torch.zeros(v.size()).cuda()
return normalized_v
def histogram_intersection(a, b):
c = np.minimum(a.cpu().numpy(), b.cpu().numpy())
c = torch.from_numpy(c).cuda()
sums = c.sum(dim=1)
return sums
def translate_pointcloud(pointcloud):
scale = torch.FloatTensor(3).uniform_(2. / 3., 3. / 2.)
offset = torch.FloatTensor(3).uniform_(-0.2, 0.2)
translated_pointcloud = torch.mul(pointcloud, scale) + offset
return translated_pointcloud
def load_pretrained_models(model, pretrained_model, phase, ismax=True): # ismax means max best
if ismax:
best_value = -np.inf
else:
best_value = np.inf
epoch = -1
if pretrained_model:
if os.path.isfile(pretrained_model):
logging.info("===> Loading checkpoint '{}'".format(pretrained_model))
checkpoint = torch.load(pretrained_model)
try:
best_value = checkpoint['best_value']
if best_value == -np.inf or best_value == np.inf:
show_best_value = False
else:
show_best_value = True
except:
best_value = best_value
show_best_value = False
model_dict = model.state_dict()
ckpt_model_state_dict = checkpoint['state_dict']
# rename ckpt (avoid name is not same because of multi-gpus)
is_model_multi_gpus = True if list(model_dict)[0][0][0] == 'm' else False
is_ckpt_multi_gpus = True if list(ckpt_model_state_dict)[0][0] == 'm' else False
if not (is_model_multi_gpus == is_ckpt_multi_gpus):
temp_dict = OrderedDict()
for k, v in ckpt_model_state_dict.items():
if is_ckpt_multi_gpus:
name = k[7:] # remove 'module.'
else:
name = 'module.' + k # add 'module'
temp_dict[name] = v
# load params
ckpt_model_state_dict = temp_dict
model_dict.update(ckpt_model_state_dict)
model.load_state_dict(ckpt_model_state_dict)
if show_best_value:
logging.info("The pretrained_model is at checkpoint {}. \t "
"Best value: {}".format(checkpoint['epoch'], best_value))
else:
logging.info("The pretrained_model is at checkpoint {}.".format(checkpoint['epoch']))
if phase == 'train':
epoch = checkpoint['epoch']
else:
epoch = -1
else:
raise ImportError("===> No checkpoint found at '{}'".format(pretrained_model))
else:
logging.info('===> No pre-trained model')
return model, best_value, epoch
def load_pretrained_optimizer(pretrained_model, optimizer, scheduler, lr, use_ckpt_lr=True):
if pretrained_model:
if os.path.isfile(pretrained_model):
checkpoint = torch.load(pretrained_model)
if 'optimizer_state_dict' in checkpoint.keys():
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.cuda()
if 'scheduler_state_dict' in checkpoint.keys():
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
if use_ckpt_lr:
try:
lr = scheduler.get_lr()[0]
except:
lr = lr
return optimizer, scheduler, lr