Skip to content

Commit 2209588

Browse files
committed
adding challenge for dataviz
1 parent 654a13e commit 2209588

File tree

1 file changed

+240
-0
lines changed

1 file changed

+240
-0
lines changed

dataviz_challenge.ipynb

+240
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,240 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"## Challenge"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"As mentioned in the Compass, we will be using data from international football (soccer :)) matches that took place between 1872 and 2019 (148 years). You can download the dataset from [**this link**](https://drive.google.com/file/d/1cCn5botBKzh1XZOvrxpcLle-Ua7Fh9BR/view?usp=sharing) and find more information about it on [**Kaggle**](https://www.kaggle.com/martj42/international-football-results-from-1872-to-2017).\n",
15+
"\n",
16+
"We need to make sure we understand all variables and information they store before we start working on the task. It's very important to understand the dataset to create meaningful visualizations."
17+
]
18+
},
19+
{
20+
"cell_type": "markdown",
21+
"metadata": {},
22+
"source": [
23+
"> #### Instruction\n",
24+
"> Use visualizations to answer following questions. Try different Python packages."
25+
]
26+
},
27+
{
28+
"cell_type": "markdown",
29+
"metadata": {},
30+
"source": [
31+
"## Task\n",
32+
"Which teams scored the largest number of goals in FIFA World Cup?"
33+
]
34+
},
35+
{
36+
"cell_type": "code",
37+
"execution_count": null,
38+
"metadata": {},
39+
"outputs": [],
40+
"source": []
41+
},
42+
{
43+
"cell_type": "code",
44+
"execution_count": null,
45+
"metadata": {},
46+
"outputs": [],
47+
"source": []
48+
},
49+
{
50+
"cell_type": "markdown",
51+
"metadata": {},
52+
"source": [
53+
"## Task\n",
54+
"What is the number of matches played in each tournament throughout history?"
55+
]
56+
},
57+
{
58+
"cell_type": "code",
59+
"execution_count": null,
60+
"metadata": {},
61+
"outputs": [],
62+
"source": []
63+
},
64+
{
65+
"cell_type": "code",
66+
"execution_count": null,
67+
"metadata": {},
68+
"outputs": [],
69+
"source": []
70+
},
71+
{
72+
"cell_type": "markdown",
73+
"metadata": {},
74+
"source": [
75+
"## Task \n",
76+
"Show the trend in number of matches per year."
77+
]
78+
},
79+
{
80+
"cell_type": "code",
81+
"execution_count": null,
82+
"metadata": {},
83+
"outputs": [],
84+
"source": []
85+
},
86+
{
87+
"cell_type": "code",
88+
"execution_count": null,
89+
"metadata": {},
90+
"outputs": [],
91+
"source": []
92+
},
93+
{
94+
"cell_type": "markdown",
95+
"metadata": {},
96+
"source": [
97+
"## Task\n",
98+
"Which teams are the most successful ones? (winning percentage)"
99+
]
100+
},
101+
{
102+
"cell_type": "code",
103+
"execution_count": null,
104+
"metadata": {},
105+
"outputs": [],
106+
"source": []
107+
},
108+
{
109+
"cell_type": "code",
110+
"execution_count": null,
111+
"metadata": {},
112+
"outputs": [],
113+
"source": []
114+
},
115+
{
116+
"cell_type": "markdown",
117+
"metadata": {},
118+
"source": [
119+
"## Task\n",
120+
"Which teams are the least successful ones? (winning percentage)"
121+
]
122+
},
123+
{
124+
"cell_type": "code",
125+
"execution_count": null,
126+
"metadata": {},
127+
"outputs": [],
128+
"source": []
129+
},
130+
{
131+
"cell_type": "code",
132+
"execution_count": null,
133+
"metadata": {},
134+
"outputs": [],
135+
"source": []
136+
},
137+
{
138+
"cell_type": "markdown",
139+
"metadata": {},
140+
"source": [
141+
"## Task\n",
142+
"Which months through the history had more matches? Is it June, July, or others? Does the number of matches change from month to month?"
143+
]
144+
},
145+
{
146+
"cell_type": "code",
147+
"execution_count": null,
148+
"metadata": {},
149+
"outputs": [],
150+
"source": []
151+
},
152+
{
153+
"cell_type": "code",
154+
"execution_count": null,
155+
"metadata": {},
156+
"outputs": [],
157+
"source": []
158+
},
159+
{
160+
"cell_type": "markdown",
161+
"metadata": {},
162+
"source": [
163+
"## Task\n",
164+
"Which teams played against each other the most?"
165+
]
166+
},
167+
{
168+
"cell_type": "code",
169+
"execution_count": null,
170+
"metadata": {},
171+
"outputs": [],
172+
"source": []
173+
},
174+
{
175+
"cell_type": "code",
176+
"execution_count": null,
177+
"metadata": {},
178+
"outputs": [],
179+
"source": []
180+
},
181+
{
182+
"cell_type": "markdown",
183+
"metadata": {},
184+
"source": [
185+
"## Task\n",
186+
"Apply your creativity to show some additional insights from the data."
187+
]
188+
},
189+
{
190+
"cell_type": "code",
191+
"execution_count": null,
192+
"metadata": {},
193+
"outputs": [],
194+
"source": []
195+
},
196+
{
197+
"cell_type": "code",
198+
"execution_count": null,
199+
"metadata": {},
200+
"outputs": [],
201+
"source": []
202+
},
203+
{
204+
"cell_type": "markdown",
205+
"metadata": {},
206+
"source": [
207+
"## Task (Stretch)\n",
208+
"Create these graphs in Tableau as well."
209+
]
210+
},
211+
{
212+
"cell_type": "code",
213+
"execution_count": null,
214+
"metadata": {},
215+
"outputs": [],
216+
"source": []
217+
}
218+
],
219+
"metadata": {
220+
"kernelspec": {
221+
"display_name": "Python 3",
222+
"language": "python",
223+
"name": "python3"
224+
},
225+
"language_info": {
226+
"codemirror_mode": {
227+
"name": "ipython",
228+
"version": 3
229+
},
230+
"file_extension": ".py",
231+
"mimetype": "text/x-python",
232+
"name": "python",
233+
"nbconvert_exporter": "python",
234+
"pygments_lexer": "ipython3",
235+
"version": "3.7.6"
236+
}
237+
},
238+
"nbformat": 4,
239+
"nbformat_minor": 4
240+
}

0 commit comments

Comments
 (0)