|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": { |
| 7 | + "ExecuteTime": { |
| 8 | + "end_time": "2020-04-23T18:44:33.442796Z", |
| 9 | + "start_time": "2020-04-23T18:44:32.388132Z" |
| 10 | + } |
| 11 | + }, |
| 12 | + "outputs": [], |
| 13 | + "source": [ |
| 14 | + "# import geopandas and matplotlib\n", |
| 15 | + "import geopandas as gpd\n", |
| 16 | + "import matplotlib.pyplot as plt" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": { |
| 23 | + "ExecuteTime": { |
| 24 | + "end_time": "2020-04-23T18:44:33.532177Z", |
| 25 | + "start_time": "2020-04-23T18:44:33.495683Z" |
| 26 | + } |
| 27 | + }, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "# countries data\n", |
| 31 | + "world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "metadata": {}, |
| 37 | + "source": [ |
| 38 | + "**Print the top 5 rows of world dataframe.**" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": null, |
| 44 | + "metadata": { |
| 45 | + "ExecuteTime": { |
| 46 | + "end_time": "2020-04-23T18:42:59.340723Z", |
| 47 | + "start_time": "2020-04-23T18:42:59.319452Z" |
| 48 | + } |
| 49 | + }, |
| 50 | + "outputs": [], |
| 51 | + "source": [] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "markdown", |
| 55 | + "metadata": {}, |
| 56 | + "source": [ |
| 57 | + "**Remove continents which have only one country in dataframe.**\n" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": 1, |
| 63 | + "metadata": { |
| 64 | + "ExecuteTime": { |
| 65 | + "end_time": "2020-04-23T18:44:33.661829Z", |
| 66 | + "start_time": "2020-04-23T18:44:33.658772Z" |
| 67 | + } |
| 68 | + }, |
| 69 | + "outputs": [], |
| 70 | + "source": [ |
| 71 | + "# continents with only one country\n" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": null, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "# remove these continents" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "markdown", |
| 85 | + "metadata": {}, |
| 86 | + "source": [ |
| 87 | + "**Create dataframe with top 3 most populated countries from each continent and store the result in dataframe with name 'world_filtered'.**\n" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "metadata": { |
| 94 | + "ExecuteTime": { |
| 95 | + "end_time": "2020-04-23T18:42:59.643052Z", |
| 96 | + "start_time": "2020-04-23T18:42:59.609214Z" |
| 97 | + } |
| 98 | + }, |
| 99 | + "outputs": [], |
| 100 | + "source": [] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "markdown", |
| 104 | + "metadata": {}, |
| 105 | + "source": [ |
| 106 | + "**Print the 'world_filtered' dataframe.**" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": null, |
| 112 | + "metadata": { |
| 113 | + "ExecuteTime": { |
| 114 | + "end_time": "2020-04-23T18:43:00.041229Z", |
| 115 | + "start_time": "2020-04-23T18:43:00.004937Z" |
| 116 | + } |
| 117 | + }, |
| 118 | + "outputs": [], |
| 119 | + "source": [] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "markdown", |
| 123 | + "metadata": {}, |
| 124 | + "source": [ |
| 125 | + "-----------------\n", |
| 126 | + "## Part I: Create a choropleth map of world:\n", |
| 127 | + "\n", |
| 128 | + " - First using **Geopandas**\n", |
| 129 | + " - Note: Geopandas may not work well on your computers, especially on Windows computers, it is advised to use Google Collab for this assignment. \n", |
| 130 | + " - Second using **Plotly**\n", |
| 131 | + " - Note: Plotly may not work well on Jupyter Labs, it is advised to use Jupyter Notebooks or Google Collab for the plotly portion. \n", |
| 132 | + "\n", |
| 133 | + "\n", |
| 134 | + "> #### Notes\n", |
| 135 | + "> * the colors of countries from 'world_filtered' are based on population\n", |
| 136 | + "> * other countries can stay white" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "markdown", |
| 141 | + "metadata": {}, |
| 142 | + "source": [ |
| 143 | + "### GeoPandas" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": null, |
| 149 | + "metadata": {}, |
| 150 | + "outputs": [], |
| 151 | + "source": [ |
| 152 | + "# create figure and axes\n", |
| 153 | + "\n", |
| 154 | + "\n", |
| 155 | + "\n", |
| 156 | + "# create map from world_filtered data-frame\n", |
| 157 | + "\n", |
| 158 | + "\n", |
| 159 | + "\n", |
| 160 | + "\n", |
| 161 | + "# add the rest of the countries" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "metadata": {}, |
| 175 | + "outputs": [], |
| 176 | + "source": [] |
| 177 | + }, |
| 178 | + { |
| 179 | + "cell_type": "code", |
| 180 | + "execution_count": null, |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [], |
| 183 | + "source": [] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "markdown", |
| 187 | + "metadata": {}, |
| 188 | + "source": [ |
| 189 | + "### Plotly" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": null, |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [], |
| 197 | + "source": [] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "code", |
| 201 | + "execution_count": null, |
| 202 | + "metadata": {}, |
| 203 | + "outputs": [], |
| 204 | + "source": [] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "code", |
| 208 | + "execution_count": null, |
| 209 | + "metadata": {}, |
| 210 | + "outputs": [], |
| 211 | + "source": [] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "markdown", |
| 215 | + "metadata": {}, |
| 216 | + "source": [ |
| 217 | + "-----------\n", |
| 218 | + "## Part II: More Geopandas\n", |
| 219 | + "\n", |
| 220 | + "In Geopandas:\n", |
| 221 | + "\n", |
| 222 | + "* add New York, Berlin, Paris, Toronto, Calgary, Tokyo to the map you have created before\n", |
| 223 | + " * to get geometry of these cities use the function, **gpd.tools.geocode**(['New York', 'Berlin', 'Paris','Toronto', 'Calgary', 'Tokyo'])\n", |
| 224 | + " * if you do not have the geopy library instaled, install it with the following command **in the jupyter notebook cell** `!pip install geopy` " |
| 225 | + ] |
| 226 | + }, |
| 227 | + { |
| 228 | + "cell_type": "code", |
| 229 | + "execution_count": null, |
| 230 | + "metadata": { |
| 231 | + "ExecuteTime": { |
| 232 | + "end_time": "2020-04-23T18:44:34.757007Z", |
| 233 | + "start_time": "2020-04-23T18:44:34.752365Z" |
| 234 | + } |
| 235 | + }, |
| 236 | + "outputs": [], |
| 237 | + "source": [ |
| 238 | + "# get geometry\n", |
| 239 | + "\n", |
| 240 | + "\n", |
| 241 | + "# create figure and axes\n", |
| 242 | + "\n", |
| 243 | + "\n", |
| 244 | + "\n", |
| 245 | + "\n", |
| 246 | + "# create map from world_filtered data-frame\n", |
| 247 | + "\n", |
| 248 | + "\n", |
| 249 | + "\n", |
| 250 | + "\n", |
| 251 | + "# add the rest of the countries\n", |
| 252 | + "\n", |
| 253 | + "\n", |
| 254 | + "\n", |
| 255 | + "# add cities\n" |
| 256 | + ] |
| 257 | + }, |
| 258 | + { |
| 259 | + "cell_type": "code", |
| 260 | + "execution_count": null, |
| 261 | + "metadata": {}, |
| 262 | + "outputs": [], |
| 263 | + "source": [] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "code", |
| 267 | + "execution_count": null, |
| 268 | + "metadata": {}, |
| 269 | + "outputs": [], |
| 270 | + "source": [] |
| 271 | + }, |
| 272 | + { |
| 273 | + "cell_type": "code", |
| 274 | + "execution_count": null, |
| 275 | + "metadata": {}, |
| 276 | + "outputs": [], |
| 277 | + "source": [] |
| 278 | + } |
| 279 | + ], |
| 280 | + "metadata": { |
| 281 | + "kernelspec": { |
| 282 | + "display_name": "Python 3", |
| 283 | + "language": "python", |
| 284 | + "name": "python3" |
| 285 | + }, |
| 286 | + "language_info": { |
| 287 | + "codemirror_mode": { |
| 288 | + "name": "ipython", |
| 289 | + "version": 3 |
| 290 | + }, |
| 291 | + "file_extension": ".py", |
| 292 | + "mimetype": "text/x-python", |
| 293 | + "name": "python", |
| 294 | + "nbconvert_exporter": "python", |
| 295 | + "pygments_lexer": "ipython3", |
| 296 | + "version": "3.7.9" |
| 297 | + }, |
| 298 | + "toc": { |
| 299 | + "base_numbering": 1, |
| 300 | + "nav_menu": {}, |
| 301 | + "number_sections": true, |
| 302 | + "sideBar": true, |
| 303 | + "skip_h1_title": false, |
| 304 | + "title_cell": "Table of Contents", |
| 305 | + "title_sidebar": "Contents", |
| 306 | + "toc_cell": false, |
| 307 | + "toc_position": {}, |
| 308 | + "toc_section_display": true, |
| 309 | + "toc_window_display": false |
| 310 | + }, |
| 311 | + "varInspector": { |
| 312 | + "cols": { |
| 313 | + "lenName": 16, |
| 314 | + "lenType": 16, |
| 315 | + "lenVar": 40 |
| 316 | + }, |
| 317 | + "kernels_config": { |
| 318 | + "python": { |
| 319 | + "delete_cmd_postfix": "", |
| 320 | + "delete_cmd_prefix": "del ", |
| 321 | + "library": "var_list.py", |
| 322 | + "varRefreshCmd": "print(var_dic_list())" |
| 323 | + }, |
| 324 | + "r": { |
| 325 | + "delete_cmd_postfix": ") ", |
| 326 | + "delete_cmd_prefix": "rm(", |
| 327 | + "library": "var_list.r", |
| 328 | + "varRefreshCmd": "cat(var_dic_list()) " |
| 329 | + } |
| 330 | + }, |
| 331 | + "types_to_exclude": [ |
| 332 | + "module", |
| 333 | + "function", |
| 334 | + "builtin_function_or_method", |
| 335 | + "instance", |
| 336 | + "_Feature" |
| 337 | + ], |
| 338 | + "window_display": false |
| 339 | + } |
| 340 | + }, |
| 341 | + "nbformat": 4, |
| 342 | + "nbformat_minor": 4 |
| 343 | +} |
0 commit comments