-
Notifications
You must be signed in to change notification settings - Fork 601
/
Copy pathshuffle.py
executable file
·644 lines (562 loc) · 26.1 KB
/
shuffle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#!/usr/bin/python3
import sys
import os
import argparse
import traceback
import math
import time
import logging
import zipfile
import shutil
import psutil
import json
import hashlib
import multiprocessing
import numpy as np
import tensorflow as tf
from tensorflow.compat.v1.python_io import TFRecordOptions,TFRecordCompressionType,TFRecordWriter
import tfrecordio
keys = [
"binaryInputNCHWPacked",
"globalInputNC",
"policyTargetsNCMove",
"globalTargetsNC",
"scoreDistrN",
"valueTargetsNCHW"
]
def is_temp_npz_like(filename):
return "_" in filename
def joint_shuffle_take_first_n(n,arrs):
for arr in arrs:
assert(len(arr) == len(arrs[0]))
perm = np.random.permutation(len(arrs[0]))
perm = perm[:n]
shuffled_arrs = []
for arr in arrs:
shuffled_arrs.append(arr[perm])
return shuffled_arrs
def memusage_mb():
return psutil.Process(os.getpid()).memory_info().rss // 1048576
def shardify(input_idx, input_file_group, num_out_files, out_tmp_dirs, keep_prob):
np.random.seed([int.from_bytes(os.urandom(4), byteorder='little') for i in range(4)])
assert(len(input_file_group) > 0)
if len(input_file_group) == 1:
with np.load(input_file_group[0]) as npz:
assert(set(npz.keys()) == set(keys))
###
#WARNING - if adding anything here, also add it to joint_shuffle below!
###
binaryInputNCHWPacked = npz["binaryInputNCHWPacked"]
globalInputNC = npz["globalInputNC"]
policyTargetsNCMove = npz["policyTargetsNCMove"]
globalTargetsNC = npz["globalTargetsNC"]
scoreDistrN = npz["scoreDistrN"]
valueTargetsNCHW = npz["valueTargetsNCHW"]
else:
binaryInputNCHWPackedList = []
globalInputNCList = []
policyTargetsNCMoveList = []
globalTargetsNCList = []
scoreDistrNList = []
valueTargetsNCHWList = []
for input_file in input_file_group:
with np.load(input_file) as npz:
assert(set(npz.keys()) == set(keys))
binaryInputNCHWPackedList.append(npz["binaryInputNCHWPacked"])
globalInputNCList.append(npz["globalInputNC"])
policyTargetsNCMoveList.append(npz["policyTargetsNCMove"])
globalTargetsNCList.append(npz["globalTargetsNC"])
scoreDistrNList.append(npz["scoreDistrN"])
valueTargetsNCHWList.append(npz["valueTargetsNCHW"])
binaryInputNCHWPacked = np.concatenate(binaryInputNCHWPackedList,axis=0)
globalInputNC = np.concatenate(globalInputNCList,axis=0)
policyTargetsNCMove = np.concatenate(policyTargetsNCMoveList,axis=0)
globalTargetsNC = np.concatenate(globalTargetsNCList,axis=0)
scoreDistrN = np.concatenate(scoreDistrNList,axis=0)
valueTargetsNCHW = np.concatenate(valueTargetsNCHWList,axis=0)
num_rows_to_keep = binaryInputNCHWPacked.shape[0]
assert(globalInputNC.shape[0] == num_rows_to_keep)
assert(policyTargetsNCMove.shape[0] == num_rows_to_keep)
assert(globalTargetsNC.shape[0] == num_rows_to_keep)
assert(scoreDistrN.shape[0] == num_rows_to_keep)
assert(valueTargetsNCHW.shape[0] == num_rows_to_keep)
if keep_prob < 1.0:
num_rows_to_keep = min(num_rows_to_keep,int(round(num_rows_to_keep * keep_prob)))
[binaryInputNCHWPacked,globalInputNC,policyTargetsNCMove,globalTargetsNC,scoreDistrN,valueTargetsNCHW] = (
joint_shuffle_take_first_n(num_rows_to_keep,[binaryInputNCHWPacked,globalInputNC,policyTargetsNCMove,globalTargetsNC,scoreDistrN,valueTargetsNCHW])
)
assert(binaryInputNCHWPacked.shape[0] == num_rows_to_keep)
assert(globalInputNC.shape[0] == num_rows_to_keep)
assert(policyTargetsNCMove.shape[0] == num_rows_to_keep)
assert(globalTargetsNC.shape[0] == num_rows_to_keep)
assert(scoreDistrN.shape[0] == num_rows_to_keep)
assert(valueTargetsNCHW.shape[0] == num_rows_to_keep)
rand_assts = np.random.randint(num_out_files,size=[num_rows_to_keep])
counts = np.bincount(rand_assts,minlength=num_out_files)
countsums = np.cumsum(counts)
assert(countsums[len(countsums)-1] == num_rows_to_keep)
#print("Shardify writing... (mem usage %dMB)" % memusage_mb())
for out_idx in range(num_out_files):
start = countsums[out_idx]-counts[out_idx]
stop = countsums[out_idx]
np.savez_compressed(
os.path.join(out_tmp_dirs[out_idx], str(input_idx) + ".npz"),
binaryInputNCHWPacked = binaryInputNCHWPacked[start:stop],
globalInputNC = globalInputNC[start:stop],
policyTargetsNCMove = policyTargetsNCMove[start:stop],
globalTargetsNC = globalTargetsNC[start:stop],
scoreDistrN = scoreDistrN[start:stop],
valueTargetsNCHW = valueTargetsNCHW[start:stop]
)
return num_out_files
def merge_shards(filename, num_shards_to_merge, out_tmp_dir, batch_size, ensure_batch_multiple, output_npz):
np.random.seed([int.from_bytes(os.urandom(4), byteorder='little') for i in range(5)])
if output_npz:
record_writer = None
else:
tfoptions = TFRecordOptions(TFRecordCompressionType.ZLIB)
record_writer = TFRecordWriter(filename,tfoptions)
binaryInputNCHWPackeds = []
globalInputNCs = []
policyTargetsNCMoves = []
globalTargetsNCs = []
scoreDistrNs = []
valueTargetsNCHWs = []
for input_idx in range(num_shards_to_merge):
shard_filename = os.path.join(out_tmp_dir, str(input_idx) + ".npz")
with np.load(shard_filename) as npz:
assert(set(npz.keys()) == set(keys))
binaryInputNCHWPacked = npz["binaryInputNCHWPacked"]
globalInputNC = npz["globalInputNC"]
policyTargetsNCMove = npz["policyTargetsNCMove"].astype(np.float32)
globalTargetsNC = npz["globalTargetsNC"]
scoreDistrN = npz["scoreDistrN"].astype(np.float32)
valueTargetsNCHW = npz["valueTargetsNCHW"].astype(np.float32)
binaryInputNCHWPackeds.append(binaryInputNCHWPacked)
globalInputNCs.append(globalInputNC)
policyTargetsNCMoves.append(policyTargetsNCMove)
globalTargetsNCs.append(globalTargetsNC)
scoreDistrNs.append(scoreDistrN)
valueTargetsNCHWs.append(valueTargetsNCHW)
###
#WARNING - if adding anything here, also add it to joint_shuffle below!
###
binaryInputNCHWPacked = np.concatenate(binaryInputNCHWPackeds)
globalInputNC = np.concatenate(globalInputNCs)
policyTargetsNCMove = np.concatenate(policyTargetsNCMoves)
globalTargetsNC = np.concatenate(globalTargetsNCs)
scoreDistrN = np.concatenate(scoreDistrNs)
valueTargetsNCHW = np.concatenate(valueTargetsNCHWs)
num_rows = binaryInputNCHWPacked.shape[0]
assert(globalInputNC.shape[0] == num_rows)
assert(policyTargetsNCMove.shape[0] == num_rows)
assert(globalTargetsNC.shape[0] == num_rows)
assert(scoreDistrN.shape[0] == num_rows)
assert(valueTargetsNCHW.shape[0] == num_rows)
[binaryInputNCHWPacked,globalInputNC,policyTargetsNCMove,globalTargetsNC,scoreDistrN,valueTargetsNCHW] = (
joint_shuffle_take_first_n(num_rows,[binaryInputNCHWPacked,globalInputNC,policyTargetsNCMove,globalTargetsNC,scoreDistrN,valueTargetsNCHW])
)
assert(binaryInputNCHWPacked.shape[0] == num_rows)
assert(globalInputNC.shape[0] == num_rows)
assert(policyTargetsNCMove.shape[0] == num_rows)
assert(globalTargetsNC.shape[0] == num_rows)
assert(scoreDistrN.shape[0] == num_rows)
assert(valueTargetsNCHW.shape[0] == num_rows)
#Just truncate and lose the batch at the end, it's fine
num_batches = (num_rows // (batch_size * ensure_batch_multiple)) * ensure_batch_multiple
if output_npz:
start = 0
stop = num_batches*batch_size
np.savez_compressed(
filename,
binaryInputNCHWPacked = binaryInputNCHWPacked[start:stop],
globalInputNC = globalInputNC[start:stop],
policyTargetsNCMove = policyTargetsNCMove[start:stop],
globalTargetsNC = globalTargetsNC[start:stop],
scoreDistrN = scoreDistrN[start:stop],
valueTargetsNCHW = valueTargetsNCHW[start:stop]
)
else:
for i in range(num_batches):
start = i*batch_size
stop = (i+1)*batch_size
example = tfrecordio.make_tf_record_example(
binaryInputNCHWPacked,
globalInputNC,
policyTargetsNCMove,
globalTargetsNC,
scoreDistrN,
valueTargetsNCHW,
start,
stop
)
record_writer.write(example.SerializeToString())
jsonfilename = os.path.splitext(filename)[0] + ".json"
with open(jsonfilename,"w") as f:
json.dump({"num_rows":num_rows,"num_batches":num_batches},f)
if record_writer is not None:
record_writer.close()
return num_batches * batch_size
def get_numpy_npz_headers(filename):
with zipfile.ZipFile(filename) as z:
wasbad = False
numrows = 0
npzheaders = {}
for subfilename in z.namelist():
npyfile = z.open(subfilename)
try:
version = np.lib.format.read_magic(npyfile)
except ValueError:
wasbad = True
print("WARNING: bad file, skipping it: %s (bad array %s)" % (filename,subfilename))
else:
(shape, is_fortran, dtype) = np.lib.format._read_array_header(npyfile,version)
npzheaders[subfilename] = (shape, is_fortran, dtype)
if wasbad:
return None
return npzheaders
def compute_num_rows(filename):
try:
npheaders = get_numpy_npz_headers(filename)
except PermissionError:
print("WARNING: No permissions for reading file: ", filename)
return (filename,None)
except zipfile.BadZipFile:
print("WARNING: Bad zip file: ", filename)
return (filename,None)
if npheaders is None or len(npheaders) <= 0:
print("WARNING: bad npz headers for file: ", filename)
return (filename,None)
(shape, is_fortran, dtype) = npheaders["binaryInputNCHWPacked"]
num_rows = shape[0]
return (filename,num_rows)
class TimeStuff(object):
def __init__(self,taskstr):
self.taskstr = taskstr
def __enter__(self):
print("Beginning: %s" % self.taskstr, flush=True)
self.t0 = time.time()
def __exit__(self, exception_type, exception_val, trace):
self.t1 = time.time()
print("Finished: %s in %s seconds" % (self.taskstr, str(self.t1 - self.t0)), flush=True)
return False
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Shuffle data files')
parser.add_argument('dirs', metavar='DIR', nargs='+', help='Directories of training data files')
parser.add_argument('-min-rows', type=int, required=False, help='Minimum training rows to use, default 250k')
parser.add_argument('-max-rows', type=int, required=False, help='Maximum training rows to use, default unbounded')
parser.add_argument('-keep-target-rows', type=int, required=False, help='Target number of rows to actually keep in the final data set, default 1.2M')
parser.add_argument('-expand-window-per-row', type=float, required=True, help='Beyond min rows, initially expand the window by this much every post-random data row')
parser.add_argument('-taper-window-exponent', type=float, required=True, help='Make the window size asymtotically grow as this power of the data rows')
parser.add_argument('-taper-window-scale', type=float, required=False, help='The scale at which the power law applies')
parser.add_argument('-add-to-window', type=float, required=False, help='Compute as if the window size were this much larger/smaller')
parser.add_argument('-summary-file', required=False, help='Summary json file for directory contents')
parser.add_argument('-out-dir', required=True, help='Dir to output training files')
parser.add_argument('-out-tmp-dir', required=True, help='Dir to use as scratch space')
parser.add_argument('-approx-rows-per-out-file', type=int, required=True, help='Number of rows per output tf records file')
parser.add_argument('-num-processes', type=int, required=True, help='Number of multiprocessing processes')
parser.add_argument('-batch-size', type=int, required=True, help='Batch size to write training examples in')
parser.add_argument('-ensure-batch-multiple', type=int, required=False, help='Ensure each file is a multiple of this many batches')
parser.add_argument('-worker-group-size', type=int, required=False, help='Internally, target having many rows per parallel sharding worker (doesnt affect merge)')
parser.add_argument('-exclude', required=False, help='Text file with npzs to ignore, one per line')
parser.add_argument('-exclude-prefix', required=False, help='Prefix to concat to lines in exclude to produce the full file path')
parser.add_argument('-only-include-md5-path-prop-lbound', type=float, required=False, help='Just before sharding, include only filepaths hashing to float >= this')
parser.add_argument('-only-include-md5-path-prop-ubound', type=float, required=False, help='Just before sharding, include only filepaths hashing to float < this')
parser.add_argument('-output-npz', action="store_true", required=False, help='Output results as npz files')
args = parser.parse_args()
dirs = args.dirs
min_rows = args.min_rows
max_rows = args.max_rows
keep_target_rows = args.keep_target_rows
expand_window_per_row = args.expand_window_per_row
taper_window_exponent = args.taper_window_exponent
taper_window_scale = args.taper_window_scale
add_to_window = args.add_to_window
summary_file = args.summary_file
out_dir = args.out_dir
out_tmp_dir = args.out_tmp_dir
approx_rows_per_out_file = args.approx_rows_per_out_file
num_processes = args.num_processes
batch_size = args.batch_size
ensure_batch_multiple = 1
if args.ensure_batch_multiple is not None:
ensure_batch_multiple = args.ensure_batch_multiple
worker_group_size = args.worker_group_size
if worker_group_size is None:
worker_group_size = 80000
exclude = args.exclude
exclude_prefix = args.exclude_prefix
if exclude_prefix is None:
exclude_prefix = ""
only_include_md5_path_prop_lbound = args.only_include_md5_path_prop_lbound
only_include_md5_path_prop_ubound = args.only_include_md5_path_prop_ubound
output_npz = args.output_npz
if min_rows is None:
print("NOTE: -min-rows was not specified, defaulting to requiring 250K rows before shuffling.")
min_rows = 250000
if keep_target_rows is None:
print("NOTE: -keep-target-rows was not specified, defaulting to keeping the first 1.5M rows.")
print("(slightly larger than default training epoch size of 1M, to give 1 epoch of data regardless of discreteness rows or batches per output file)")
print("If you intended to shuffle the whole dataset instead, pass in -keep-target-rows <very large number>")
keep_target_rows = 1500000
if add_to_window is None:
add_to_window = 0
summary_data_by_dirpath = {}
if summary_file is not None:
with TimeStuff("Loading " + summary_file):
# Try a bunch of times, just to be robust to if the file is being swapped out in nfs
for i in range(10):
success = False
try:
with open(summary_file) as fp:
summary_data_by_dirpath = json.load(fp)
success = True
except OSError:
success = False
except ValueError:
success = False
if success:
break
time.sleep(1)
if not success:
raise RuntimeError("Could not load summary file")
exclude_set = set()
if exclude is not None:
with TimeStuff("Loading " + exclude):
# Try a bunch of times, just to be robust to if the file is being swapped out in nfs
for i in range(10):
success = False
try:
with open(exclude,"r") as exclude_in:
excludes = exclude_in.readlines()
excludes = [x.strip() for x in excludes]
excludes = [x for x in excludes if len(x) > 0]
excludes = [exclude_prefix + x for x in excludes]
exclude_set = set(excludes)
success = True
except OSError:
success = False
except ValueError:
success = False
if success:
break
time.sleep(1)
if not success:
raise RuntimeError("Could not load summary file")
all_files = []
files_with_unknown_num_rows = []
excluded_count = 0
tempfilelike_count = 0
with TimeStuff("Finding files"):
for d in dirs:
for (path,dirnames,filenames) in os.walk(d, followlinks=True):
i = 0
while i < len(dirnames):
dirname = dirnames[i]
filename_mtime_num_rowss = summary_data_by_dirpath.get(os.path.abspath(os.path.join(path, dirname)))
if filename_mtime_num_rowss is not None:
del dirnames[i]
i -= 1
for (filename,mtime,num_rows) in filename_mtime_num_rowss:
if is_temp_npz_like(filename):
#print("WARNING: file looks like a temp file, treating as exclude: ", os.path.join(path,dirname,filename))
excluded_count += 1
tempfilelike_count += 1
continue
filename = os.path.join(path,dirname,filename)
if filename in exclude_set:
excluded_count += 1
continue
if num_rows is None:
print("WARNING: Skipping bad rowless file, treating as exclude: ", filename)
excluded_count += 1
continue
all_files.append((filename,mtime,num_rows))
i += 1
filtered_filenames = []
for filename in filenames:
if not filename.endswith(".npz"):
continue
if is_temp_npz_like(filename):
# print("WARNING: file looks like a temp file, treating as exclude: ", os.path.join(path,filename))
excluded_count += 1
tempfilelike_count += 1
continue
filename = os.path.join(path,filename)
if filename in exclude_set:
excluded_count += 1
continue
filtered_filenames.append(filename)
filenames = filtered_filenames
files_with_unknown_num_rows.extend(filenames)
filenames = [(filename,os.path.getmtime(filename)) for filename in filenames]
all_files.extend(filenames)
print("Total number of files: %d" % len(all_files), flush=True)
print("Total number of files with unknown row count: %d" % len(files_with_unknown_num_rows), flush=True)
print("Excluded count: %d" % excluded_count, flush=True)
print("Excluded count due to looking like temp file: %d" % tempfilelike_count, flush=True)
with TimeStuff("Sorting"):
all_files.sort(key=(lambda x: x[1]), reverse=False)
with TimeStuff("Computing rows for unsummarized files"):
with multiprocessing.Pool(num_processes) as pool:
results = pool.map(compute_num_rows,files_with_unknown_num_rows)
results = dict(results)
for i in range(len(all_files)):
info = all_files[i]
if len(info) < 3:
num_rows = results[info[0]]
all_files[i] = (info[0], info[1], num_rows)
files_with_row_range = []
num_rows_total = 0 #Number of data rows
num_random_rows_capped = 0 #Number of random data rows, capped at min_rows - we never keep more than min_rows many data rows if they're from random.
num_postrandom_rows = 0 #Number of NON-random rows
#How far offset do we start on the power-law window tail? E.g. what number of postrandom rows do we need before the window size grows by a factor
#of 2^(taper_window_exponent)? For now, we set it equal to the min rows
if taper_window_scale is not None:
window_taper_offset = taper_window_scale
else:
window_taper_offset = min_rows
def num_usable_rows():
global num_random_rows_capped
global num_postrandom_rows
return num_random_rows_capped + num_postrandom_rows
def num_desired_rows():
#Every post-random row moves one row beyond window_taper_offset
power_law_x = num_usable_rows() - min_rows + window_taper_offset + add_to_window
#Apply power law and correct for window_taper_offset so we're still anchored at 0
unscaled_power_law = (power_law_x ** taper_window_exponent) - (window_taper_offset ** taper_window_exponent)
#Scale so that we have an initial derivative of 1
scaled_power_law = unscaled_power_law / (taper_window_exponent * (window_taper_offset ** (taper_window_exponent-1)))
#Scale so that we have the desired initial slope, and add back the minimum random rows
return int(scaled_power_law * expand_window_per_row + min_rows)
for (filename,mtime,num_rows) in all_files:
if num_rows is None:
print("WARNING: Skipping bad file: ", filename)
continue
if num_rows <= 0:
continue
row_range = (num_rows_total, num_rows_total + num_rows)
num_rows_total += num_rows
if "random" not in filename:
num_postrandom_rows += num_rows
else:
num_random_rows_capped = min(num_random_rows_capped + num_rows, min_rows)
files_with_row_range.append((filename,row_range))
#If we already have a window size bigger than max, then just stop
if max_rows is not None and num_desired_rows() >= max_rows:
break
if os.path.exists(out_dir):
raise Exception(out_dir + " already exists")
os.mkdir(out_dir)
if num_rows_total <= 0:
print("No rows found")
sys.exit(0)
#If we don't have enough rows, then quit out
if num_rows_total < min_rows:
print("Not enough rows, only %d (fewer than %d)" % (num_rows_total,min_rows))
sys.exit(0)
print("Total rows found: %d (%d usable)" % (num_rows_total,num_usable_rows()))
#Reverse so that recent files are first
files_with_row_range.reverse()
#Now assemble only the files we need to hit our desired window size
desired_num_rows = num_desired_rows()
desired_num_rows = max(desired_num_rows,min_rows)
desired_num_rows = min(desired_num_rows,max_rows) if max_rows is not None else desired_num_rows
print("Desired num rows: %d / %d" % (desired_num_rows,num_rows_total))
desired_input_files = []
desired_input_row_range = []
num_rows_used = 0
len_files_with_row_range = len(files_with_row_range)
print_stride = 1 + len(files_with_row_range) // 40
with TimeStuff("Computing desired rows"):
for i in range(len(files_with_row_range)):
(filename,(start_row,end_row)) = files_with_row_range[i]
# This could happen if the .summary.json file is inaccurate after file deletions
if not os.path.exists(filename):
continue
desired_input_files.append((filename,end_row-start_row))
desired_input_row_range.append((start_row,end_row))
num_rows_used += (end_row - start_row)
if i % print_stride == 0 or num_rows_used >= desired_num_rows:
print("Using: %s (%d-%d) (%d/%d desired rows)" % (filename,start_row,end_row,num_rows_used,desired_num_rows))
if num_rows_used >= desired_num_rows:
break
min_start_row = min(start_row for (start_row,end_row) in desired_input_row_range)
max_end_row = max(end_row for (start_row,end_row) in desired_input_row_range)
print("Finally, using: (%d-%d) (%d/%d desired rows)" % (min_start_row,max_end_row,num_rows_used,desired_num_rows))
np.random.seed()
np.random.shuffle(desired_input_files)
approx_rows_to_keep = num_rows_used
if keep_target_rows is not None:
approx_rows_to_keep = min(approx_rows_to_keep, keep_target_rows)
keep_prob = approx_rows_to_keep / num_rows_used
num_out_files = int(round(approx_rows_to_keep / approx_rows_per_out_file))
num_out_files = max(num_out_files,1)
if output_npz:
out_files = [os.path.join(out_dir, "data%d.npz" % i) for i in range(num_out_files)]
else:
out_files = [os.path.join(out_dir, "data%d.tfrecord" % i) for i in range(num_out_files)]
out_tmp_dirs = [os.path.join(out_tmp_dir, "tmp.shuf%d" % i) for i in range(num_out_files)]
print("Writing %d output files with %d kept / %d desired rows" % (num_out_files, approx_rows_to_keep, desired_num_rows))
def clean_tmp_dirs():
for tmp_dir in out_tmp_dirs:
if os.path.exists(tmp_dir):
print("Cleaning up tmp dir: " + tmp_dir)
shutil.rmtree(tmp_dir)
clean_tmp_dirs()
for tmp_dir in out_tmp_dirs:
os.mkdir(tmp_dir)
if only_include_md5_path_prop_lbound is not None or only_include_md5_path_prop_ubound is not None:
new_desired_input_files = []
for (input_file,num_rows_in_file) in desired_input_files:
input_file_base = os.path.basename(input_file)
hashfloat = int("0x"+hashlib.md5(str(input_file_base).encode('utf-8')).hexdigest()[:13],16) / 2 ** 52
ok = True
if only_include_md5_path_prop_lbound is not None and hashfloat < only_include_md5_path_prop_lbound:
ok = False
if only_include_md5_path_prop_ubound is not None and hashfloat >= only_include_md5_path_prop_ubound:
ok = False
if ok:
new_desired_input_files.append((input_file,num_rows_in_file))
print("Due to only_include_md5, filtering down to %d/%d files" % (len(new_desired_input_files),len(desired_input_files)))
desired_input_files = new_desired_input_files
del desired_input_row_range # this array is not consistent with new_desired_input_files
# Clump files into sharding groups. More efficient if shuffling a ton of small npz files
# since we aren't doing separate tasks for every individual file but rather handling a bunch
# of files at once, and also makes chunkier shards on disk when it comes time to shuffle.
desired_input_file_groups = []
group_size_so_far = 0
group_so_far = []
for (input_file,num_rows_in_file) in desired_input_files:
if num_rows_in_file <= 0:
continue
group_so_far.append(input_file)
group_size_so_far += num_rows_in_file
if group_size_so_far >= worker_group_size:
desired_input_file_groups.append(group_so_far)
group_so_far = []
group_size_so_far = 0
if group_size_so_far > 0:
desired_input_file_groups.append(group_so_far)
group_so_far = []
group_size_so_far = 0
print("Grouping %d input files into %d sharding groups" % (len(desired_input_files),len(desired_input_file_groups)),flush=True)
with multiprocessing.Pool(num_processes) as pool:
with TimeStuff("Sharding"):
shard_results = pool.starmap(shardify, [
(input_idx, desired_input_file_groups[input_idx], num_out_files, out_tmp_dirs, keep_prob) for input_idx in range(len(desired_input_file_groups))
])
with TimeStuff("Merging"):
num_shards_to_merge = len(desired_input_file_groups)
merge_results = pool.starmap(merge_shards, [
(out_files[idx],num_shards_to_merge,out_tmp_dirs[idx],batch_size,ensure_batch_multiple,output_npz) for idx in range(len(out_files))
])
print("Mumber of rows by output file:",flush=True)
print(list(zip(out_files,merge_results)),flush=True)
sys.stdout.flush()
clean_tmp_dirs()
dump_value = {
"range": (min_start_row, max_end_row)
}
with open(out_dir + ".json", 'w') as f:
json.dump(dump_value, f)