-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseq2seq_model.py
561 lines (485 loc) · 24 KB
/
seq2seq_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sequence-to-sequence model with an attention mechanism."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
from math import log
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.python.ops import control_flow_ops
#from tensorflow.models.rnn.translate import data_utils
import data_utils
import seq2seq as rl_seq2seq
class Seq2SeqModel(object):
"""Sequence-to-sequence model with attention and for multiple buckets.
This class implements a multi-layer recurrent neural network as encoder,
and an attention-based decoder. This is the same as the model described in
this paper: http://arxiv.org/abs/1412.7449 - please look there for details,
or into the seq2seq library for complete model implementation.
This class also allows to use GRU cells in addition to LSTM cells, and
sampled softmax to handle large output vocabulary size. A single-layer
version of this model, but with bi-directional encoder, was presented in
http://arxiv.org/abs/1409.0473
and sampled softmax is described in Section 3 of the following paper.
http://arxiv.org/abs/1412.2007
"""
def __init__(self,
source_vocab_size,
target_vocab_size,
buckets,
dummy_set,
size,
num_layers,
max_gradient_norm,
batch_size,
learning_rate,
learning_rate_decay_factor,
fixed_rate,
weibo_rate,
qa_rate,
use_lstm=False,
num_samples=512,
forward_only=False,
scope_name='seq2seq',
dtype=tf.float32):
self.scope_name = scope_name
with tf.variable_scope(self.scope_name):
self.source_vocab_size = source_vocab_size
self.target_vocab_size = target_vocab_size
self.buckets = buckets
self.batch_size = batch_size
self.fixed_rate = fixed_rate
self.weibo_rate = weibo_rate
self.qa_rate = qa_rate
self.learning_rate = tf.Variable(float(learning_rate), trainable=False, dtype=dtype)
self.learning_rate_decay_op = self.learning_rate.assign(self.learning_rate * learning_rate_decay_factor)
self.global_step = tf.Variable(0, trainable=False)
self.dummy_dialogs = dummy_set
# If we use sampled softmax, we need an output projection.
output_projection = None
softmax_loss_function = None
# Sampled softmax only makes sense if we sample less than vocabulary size.
if num_samples > 0 and num_samples < self.target_vocab_size:
w_t = tf.get_variable("proj_w", [self.target_vocab_size, size], dtype=dtype)
w = tf.transpose(w_t)
b = tf.get_variable("proj_b", [self.target_vocab_size], dtype=dtype)
output_projection = (w, b)
def sampled_loss(inputs, labels):
labels = tf.reshape(labels, [-1, 1])
# We need to compute the sampled_softmax_loss using 32bit floats to
# avoid numerical instabilities.
local_w_t = tf.cast(w_t, tf.float32)
local_b = tf.cast(b, tf.float32)
local_inputs = tf.cast(inputs, tf.float32)
return tf.cast(
tf.nn.sampled_softmax_loss(local_w_t, local_b, local_inputs, labels,
num_samples, self.target_vocab_size),
dtype)
softmax_loss_function = sampled_loss
# Create the internal multi-layer cell for our RNN.
single_cell = tf.nn.rnn_cell.GRUCell(size)
if use_lstm:
single_cell = tf.nn.rnn_cell.BasicLSTMCell(size)
cell = single_cell
if num_layers > 1:
cell = tf.nn.rnn_cell.MultiRNNCell([single_cell] * num_layers)
# The seq2seq function: we use embedding for the input and attention.
def seq2seq_f(encoder_inputs, decoder_inputs, do_decode):
return rl_seq2seq.embedding_attention_seq2seq(
encoder_inputs,
decoder_inputs,
cell,
num_encoder_symbols=source_vocab_size,
num_decoder_symbols=target_vocab_size,
embedding_size=size,
output_projection=output_projection,
feed_previous=do_decode,
dtype=dtype)
# Feeds for inputs.
self.encoder_inputs = []
self.decoder_inputs = []
self.target_weights = []
for i in xrange(buckets[-1][0]): # Last bucket is the biggest one.
self.encoder_inputs.append(tf.placeholder(tf.int32, shape=[None],
name="encoder{0}".format(i)))
for i in xrange(buckets[-1][1] + 1):
self.decoder_inputs.append(tf.placeholder(tf.int32, shape=[None],
name="decoder{0}".format(i)))
self.target_weights.append(tf.placeholder(dtype, shape=[None],
name="weight{0}".format(i)))
# Our targets are decoder inputs shifted by one.
targets = [self.decoder_inputs[i + 1]
for i in xrange(len(self.decoder_inputs) - 1)]
# for reinforcement learning
self.force_dec_input = tf.placeholder(tf.bool, name="force_dec_input")
self.en_output_proj = tf.placeholder(tf.bool, name="en_output_proj")
# Training outputs and losses.
#if forward_only:
self.outputs, self.losses, self.encoder_state = rl_seq2seq.model_with_buckets(
self.encoder_inputs, self.decoder_inputs, targets,
self.target_weights, buckets, lambda x, y: seq2seq_f(x, y, tf.select(self.force_dec_input, False, True)),
softmax_loss_function=softmax_loss_function)
# If we use output projection, we need to project outputs for decoding.
#if output_projection is not None:
for b in xrange(len(buckets)):
self.outputs[b] = [
control_flow_ops.cond(
self.en_output_proj,
lambda: tf.matmul(output, output_projection[0]) + output_projection[1],
lambda: output
)
for output in self.outputs[b]
]
# Gradients and SGD update operation for training the model.
self.tvars = tf.trainable_variables()
#if not forward_only:
self.gradient_norms = []
self.updates = []
self.advantage = [tf.placeholder(tf.float32, name="advantage_%i" % i) for i in range(len(buckets))]
opt = tf.train.GradientDescentOptimizer(self.learning_rate)
for b in xrange(len(buckets)):
adjusted_losses = tf.sub(self.losses[b], self.advantage[b])
gradients = tf.gradients(adjusted_losses, self.tvars)
clipped_gradients, norm = tf.clip_by_global_norm(gradients,
max_gradient_norm)
self.gradient_norms.append(norm)
self.updates.append(opt.apply_gradients(
zip(clipped_gradients, self.tvars), global_step=self.global_step))
# self.saver = tf.train.Saver(tf.all_variables())
all_variables = [k for k in tf.global_variables() if k.name.startswith(self.scope_name)]
self.saver = tf.train.Saver(all_variables)
def step(self, session, encoder_inputs, decoder_inputs, target_weights,
bucket_id, forward_only=True, force_dec_input=False, advantage=None, debug=True):
# Check if the sizes match.
encoder_size, decoder_size = self.buckets[bucket_id]
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder length must be equal to the one in bucket,"
" %d != %d." % (len(encoder_inputs), encoder_size))
if len(decoder_inputs) != decoder_size:
raise ValueError("Decoder length must be equal to the one in bucket,"
" %d != %d." % (len(decoder_inputs), decoder_size))
if len(target_weights) != decoder_size:
raise ValueError("Weights length must be equal to the one in bucket,"
" %d != %d." % (len(target_weights), decoder_size))
# Input feed: encoder inputs, decoder inputs, target_weights, as provided.
input_feed = {
self.force_dec_input.name: force_dec_input,
self.en_output_proj: (forward_only),
}
for l in xrange(len(self.buckets)):
input_feed[self.advantage[l].name] = advantage[l] if advantage else 0
for l in xrange(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
for l in xrange(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
input_feed[self.target_weights[l].name] = target_weights[l]
# Since our targets are decoder inputs shifted by one, we need one more.
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([self.batch_size], dtype=np.int32)
# Output feed: depends on whether we do a backward step or not.
if not forward_only: # normal training
output_feed = [self.updates[bucket_id], # Update Op that does SGD.
self.gradient_norms[bucket_id], # Gradient norm.
self.losses[bucket_id]] # Loss for this batch.
else: # testing or reinforcement learning
output_feed = [self.encoder_state[bucket_id], self.losses[bucket_id]] # Loss for this batch.
for l in xrange(decoder_size): # Output logits.
output_feed.append(self.outputs[bucket_id][l])
outputs = session.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], None # Gradient norm, loss, no outputs.
else:
return outputs[0], outputs[1], outputs[2:] # encoder_state, loss, outputs.
def step_rl(self, session, buckets, encoder_inputs, decoder_inputs, target_weights, batch_source_encoder,
batch_source_decoder, bucket_id, rev_vocab=None, debug=True):
# initialize
init_inputs = [encoder_inputs, decoder_inputs, target_weights, bucket_id]
batch_mask = [1 for _ in xrange(self.batch_size)]
# debug
# resp_tokens, resp_txt = self.logits2tokens(encoder_inputs, rev_vocab, sent_max_length, reverse=True)
# if debug: print("[INPUT]:", resp_tokens)
# Initialize
#if debug: print("step_rf INPUTS: %s" %encoder_inputs)
#if debug: print("step_rf TARGET: %s" %decoder_inputs)
#if debug: print("batch_source_encoder: %s" %batch_source_encoder)
#if debug: print("batch_source_decoder: %s" %batch_source_decoder)
ep_rewards, ep_step_loss, enc_states = [], [], []
ep_encoder_inputs, ep_target_weights, ep_bucket_id = [], [], []
episode, dialog = 0, []
# [Episode] per episode = n steps, until break
print ("ep_encoder_inputs: %s" %ep_encoder_inputs)
print("bucket: %s, bucekt[-1][0]: %s" %(self.buckets, self.buckets[-1][0]))
while True:
#----[Step]------with general function-----------------------------
#ep_encoder_inputs.append(self.remove_type(encoder_inputs, type=0))
ep_encoder_inputs.append(batch_source_encoder)
#decoder_len = [len(seq) for seq in batch_source_decoder]
if debug: print ("ep_encoder_inputs shape: ", np.shape(ep_encoder_inputs))
#if debug: print ("[INPUT]: %s" %ep_encoder_inputs[-1])
encoder_state, step_loss, output_logits = self.step(session, encoder_inputs, decoder_inputs, target_weights,
bucket_id, forward_only=True, force_dec_input=False)
print("encoder_state: " , np.shape(encoder_state))
ep_target_weights.append(target_weights)
ep_bucket_id.append(bucket_id)
ep_step_loss.append(step_loss)
state_tran = np.transpose(encoder_state, axes=(1,0,2))
print("state_tran: ", np.shape(state_tran))
state_vec = np.reshape(state_tran, (self.batch_size, -1))
print("state_vec: ", np.shape(state_vec))
enc_states.append(state_vec)
resp_tokens = self.remove_type(output_logits, self.buckets[bucket_id], type=1)
#print("remove_type resps: %s" %resp_tokens)
#if debug: print("[RESP]: (%.4f), resp len: %s, content: %s" %(step_loss, len(resp_tokens), resp_tokens))
try:
encoder_trans = np.transpose(ep_encoder_inputs, axes=(1,0))
except ValueError:
encoder_trans = np.transpose(ep_encoder_inputs, axes=(1,0,2))
#if debug: print ("[ep_encoder_inputs] shape: ", np.shape(ep_encoder_inputs))
if debug: print ("[encoder_trans] shape: ", np.shape(encoder_trans))
#if episode == 5: print (2/0)
for i, (resp, ep_encoder) in enumerate(zip(resp_tokens, encoder_trans)):
print("resp: ", resp)
if (len(resp) <= 3) or (resp in self.dummy_dialogs) or (resp in ep_encoder.tolist()):
batch_mask[i] = 0
print("make mask index: %d, batch_mask: %s" %(i, batch_mask))
if sum(batch_mask)==0 or episode>5: break
#----[Reward]----------------------------------------
# r1: Ease of answering
print("r1: Ease of answering")
r1 = [self.logProb(session, buckets, resp_tokens, [d for _ in resp_tokens], mask= batch_mask) for d in self.dummy_dialogs]
print("r1: final value: ", r1)
r1 = -np.mean(r1) if r1 else 0
# r2: Information Flow
r2_list = []
if len(enc_states) < 2:
r2 = 0
else:
batch_vec_a, batch_vec_b = enc_states[-2], enc_states[-1]
for i, (vec_a, vec_b) in enumerate(zip(batch_vec_a, batch_vec_b)):
if batch_mask[i] == 0: continue
rr2 = sum(vec_a*vec_b) / sum(abs(vec_a)*abs(vec_b))
#print("vec_a*vec_b: %s" %sum(vec_a*vec_b))
#print("r2: %s" %r2)
if(rr2 < 0):
print("rr2: ", rr2)
print("vec_a: ", vec_a)
print("vec_b: ", vec_b)
rr2 = -rr2
else:
rr2 = -log(rr2)
r2_list.append(rr2)
r2 = sum(r2_list)/len(r2_list)
# r3: Semantic Coherence
print("r3: Semantic Coherence")
r3 = -self.logProb(session, buckets, resp_tokens, ep_encoder_inputs[-1], mask= batch_mask)
# Episode total reward
print("r1: %s, r2: %s, r3: %s" %(r1,r2,r3))
R = 0.25*r1 + 0.25*r2 + 0.5*r3
ep_rewards.append(R)
#----------------------------------------------------
episode += 1
#prepare for next dialogue
bk_id = []
for i in range(len(resp_tokens)):
bk_id.append(min([b for b in range(len(buckets)) if buckets[b][0] >= len(resp_tokens[i])]))
bucket_id = max(bk_id)
feed_data = {bucket_id: [(resp_tokens, [])]}
encoder_inputs, decoder_inputs, target_weights, batch_source_encoder, _ = self.get_batch(feed_data, bucket_id, type=2)
if len(ep_rewards) == 0: ep_rewards.append(0)
print("[Step] final:", episode, ep_rewards)
# gradient decent according to batch rewards
rto = 0.0
if (len(ep_step_loss) <= 1) or (len(ep_rewards) <=1) or (max(ep_rewards) - min(ep_rewards) == 0):
rto = 0.0
else:
rto = (max(ep_step_loss) - min(ep_step_loss)) / (max(ep_rewards) - min(ep_rewards))
advantage = [np.mean(ep_rewards)*rto] * len(buckets)
print("advantage: %s" %advantage)
_, step_loss, _ = self.step(session, init_inputs[0], init_inputs[1], init_inputs[2], init_inputs[3],
forward_only=False, force_dec_input=False, advantage=advantage)
return None, step_loss, None
# log(P(b|a)), the conditional likelyhood
def logProb(self, session, buckets, tokens_a, tokens_b, mask=None):
def softmax(x):
return np.exp(x) / np.sum(np.exp(x), axis=0)
# prepare for next dialogue
#bucket_id = min([b for b in range(len(buckets)) if buckets[b][0] > len(tokens_a) and buckets[b][1] > len(tokens_b)])
#print("tokens_a: %s" %tokens_a)
print("tokens_b: %s" %tokens_b)
bk_id = []
for i in xrange(len(tokens_a)):
bk_id.append(min([b for b in xrange(len(buckets))
if buckets[b][0] >= len(tokens_a[i]) and buckets[b][1] >= len(tokens_b[i])]))
bucket_id = max(bk_id)
#print("bucket_id: %s" %bucket_id)
feed_data = {bucket_id: zip(tokens_a, tokens_b)}
#print("logProb feed_back: %s" %feed_data[bucket_id])
encoder_inputs, decoder_inputs, target_weights, _, _ = self.get_batch(feed_data, bucket_id, type=1)
#print("logProb: encoder: %s; decoder: %s" %(encoder_inputs, decoder_inputs))
# step
_, _, output_logits = self.step(session, encoder_inputs, decoder_inputs, target_weights,
bucket_id, forward_only=True, force_dec_input=True)
logits_t = np.transpose(output_logits, (1,0,2))
print("logits_t shape: " ,np.shape(logits_t))
sum_p = []
for i, (tokens, logits) in enumerate(zip(tokens_b, logits_t)):
print("tokens: %s, index: %d" %(tokens, i))
#print("logits: %s" %logits)
#if np.sum(tokens) == 0: break
if mask[i] == 0: continue
p = 1
for t, logit in zip(tokens, logits):
#print("logProb: logit: %s" %logit)
norm = softmax(logit)[t]
#print ("t: %s, norm: %s" %(t, norm))
p *= norm
if p < 1e-100:
#print ("p: ", p)
p = 1e-100
p = log(p) / len(tokens)
print ("logProb: p: %s" %(p))
sum_p.append(p)
re = np.sum(sum_p)/len(sum_p)
#print("logProb: P: %s" %(re))
return re
def remove_type(self, sequence, bucket,type=0):
tokens = []
resps = []
if type == 0:
tokens = [i for i in [t for t in reversed(sequence)] if i.sum() != 0]
elif type == 1:
#print ("remove_type type=1 tokens: %s" %sequence)
for seq in sequence:
#print("seq: %s" %seq)
token = []
for t in seq:
#print("seq_t: %s" %t)
# t = list(t)
# print("list(t): %s" %t)
# t = np.array(t)
# print("array(t): %s" %t)
token.append(int(np.argmax(t, axis=0)))
tokens.append(token)
#tokens = [i for i in [int(np.argmax(t, axis=1)) for t in [seq for seq in sequence]]]
#tokens = [i for i in [int(t.index(max(t))) for t in [seq for seq in sequence]]]
else:
print ("type only 0(encoder_inputs) or 1(decoder_outputs)")
#print("remove_type tokens: %s" %tokens)
tokens_t = []
for col in range(len(tokens[0])):
tokens_t.append([tokens[row][col] for row in range(len(tokens))])
for seq in tokens_t:
if data_utils.EOS_ID in seq:
resps.append(seq[:seq.index(data_utils.EOS_ID)][:bucket[1]])
else:
resps.append(seq[:bucket[1]])
return resps
# make logits to tokens
def logits2tokens(self, logits, rev_vocab, sent_max_length=None, reverse=False):
if reverse:
tokens = [t[0] for t in reversed(logits)]
else:
tokens = [int(np.argmax(t, axis=1)) for t in logits]
if data_utils.EOS_ID in tokens:
eos = tokens.index(data_utils.EOS_ID)
tokens = tokens[:eos]
txt = [rev_vocab[t] for t in tokens]
if sent_max_length:
tokens, txt = tokens[:sent_max_length], txt[:sent_max_length]
return tokens, txt
def discount_rewards(self, r, gamma=0.99):
""" take 1D float array of rewards and compute discounted reward """
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(xrange(0, r.size)):
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def get_batch(self, train_data, bucket_id, type=0, fixed_set=None, weibo_set=None, qa_set=None):
encoder_size, decoder_size = self.buckets[bucket_id]
encoder_inputs, decoder_inputs = [], []
fixed_train_num = 0
weibo_train_num = 0
qa_train_num = 0
if type == 0:
fixed_num = int(self.batch_size * self.fixed_rate)
fixed_len = len(fixed_set[bucket_id])
fixed_train_num = min(fixed_num, fixed_len)
weibo_num = int(self.batch_size * self.weibo_rate)
weibo_len = len(weibo_set[bucket_id])
weibo_train_num = min(weibo_num, weibo_len) + fixed_train_num
qa_num = int(self.batch_size * self.qa_rate)
qa_len = len(qa_set[bucket_id])
qa_train_num = min(qa_num, qa_len) + weibo_train_num
#print("Batch_Size: %s" %self.batch_size)
# Get a random batch of encoder and decoder inputs from data,
# pad them if needed, reverse encoder inputs and add GO to decoder.
batch_source_encoder, batch_source_decoder = [], []
#print("bucket_id: %s" %bucket_id)
for batch_i in xrange(self.batch_size):
if type == 1:
encoder_input, decoder_input = train_data[bucket_id][batch_i]
elif type == 2:
#print("data[bucket_id]: ", data[bucket_id][0])
encoder_input_a, decoder_input = train_data[bucket_id][0]
encoder_input = encoder_input_a[batch_i]
elif type == 0:
if fixed_train_num > batch_i:
encoder_input, decoder_input = random.choice(fixed_set[bucket_id])
print("fixed en: %s, de: %s" %(encoder_input, decoder_input))
elif weibo_train_num > batch_i:
encoder_input, decoder_input = random.choice(weibo_set[bucket_id])
print("weibo en: %s, de: %s" %(encoder_input, decoder_input))
elif qa_train_num > batch_i:
encoder_input, decoder_input = random.choice(qa_set[bucket_id])
print("qa en: %s, de: %s" %(encoder_input, decoder_input))
else:
encoder_input, decoder_input = random.choice(train_data[bucket_id])
print("train en: %s, de: %s" %(encoder_input, decoder_input))
batch_source_encoder.append(encoder_input)
batch_source_decoder.append(decoder_input)
# Encoder inputs are padded and then reversed.
encoder_pad = [data_utils.PAD_ID] * (encoder_size - len(encoder_input))
encoder_inputs.append(list(reversed(encoder_input + encoder_pad)))
# Decoder inputs get an extra "GO" symbol, and are padded then.
decoder_pad_size = decoder_size - len(decoder_input) - 1
decoder_inputs.append([data_utils.GO_ID] + decoder_input +
[data_utils.PAD_ID] * decoder_pad_size)
# Now we create batch-major vectors from the data selected above.
batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []
# Batch encoder inputs are just re-indexed encoder_inputs.
for length_idx in xrange(encoder_size):
batch_encoder_inputs.append(
np.array([encoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(self.batch_size)], dtype=np.int32))
# Batch decoder inputs are re-indexed decoder_inputs, we create weights.
for length_idx in xrange(decoder_size):
batch_decoder_inputs.append(
np.array([decoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(self.batch_size)], dtype=np.int32))
# Create target_weights to be 0 for targets that are padding.
batch_weight = np.ones(self.batch_size, dtype=np.float32)
for batch_idx in xrange(self.batch_size):
# We set weight to 0 if the corresponding target is a PAD symbol.
# The corresponding target is decoder_input shifted by 1 forward.
if length_idx < decoder_size - 1:
target = decoder_inputs[batch_idx][length_idx + 1]
if length_idx == decoder_size - 1 or target == data_utils.PAD_ID:
batch_weight[batch_idx] = 0.0
batch_weights.append(batch_weight)
return batch_encoder_inputs, batch_decoder_inputs, batch_weights, batch_source_encoder, batch_source_decoder