-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWattsStrogatzModel.py
93 lines (69 loc) · 2.34 KB
/
WattsStrogatzModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import random
def flip(p):
return np.random.random() < p
def adjacent_edges(nodes, halfk):
n = len(nodes)
for i, u in enumerate(nodes):
for j in range(i + 1, i + halfk + 1):
v = nodes[j % n]
yield u, v
def make_ring_lattice(n, k):
G = nx.Graph()
nodes = range(n)
G.add_nodes_from(nodes)
G.add_edges_from(adjacent_edges(nodes, k // 2))
return G
def rewire_node(lattice, current_node, neighbour_current_node):
new_neighbour = np.random.choice(
[
x
for x in lattice.nodes()
if not (x in lattice.neighbors(current_node) and x != current_node)
]
)
lattice.remove_edge(current_node, neighbour_current_node)
lattice.add_edge(current_node, new_neighbour)
return lattice
def watts_strogatz_model(lattice, start, halfk, p):
current_node = 0
n = len(lattice.nodes())
for i in range(1, halfk + 1):
for _ in range(0, n):
neighbour_current_node = (current_node + i) % (n)
if flip(p):
lattice = rewire_node(lattice, current_node, neighbour_current_node)
current_node = (current_node + 1) % (n)
return lattice
def all_pairs(nodes):
for i, u in enumerate(nodes):
for j, v in enumerate(nodes):
if i > j:
yield u, v
def path_lengths(lattice):
length_map = nx.shortest_path_length(lattice)
lengths = [length_map[u][v] for u, v in all_pairs(lattice.nodes())]
return lengths
def characteristic_path_length(lattice):
return np.mean(path_lengths(lattice))
def node_clustering(lattice, u):
neighbours = lattice.neighbors(u)
k = len(neighbours)
if k < 2:
return 0
total = (k * (k - 1)) / 2
exist = 0
for v, w in all_pairs(neighbours):
if lattice.has_edge(v, w):
exist += 1
return exist / total
def clustering_coefficient(lattice):
cc = np.mean([node_clustering(lattice, node) for node in lattice])
return cc
if __name__ == "__main__":
lattice = make_ring_lattice(1000, 10)
lattice = watts_strogatz_model(lattice, 0, 2, 0.9)
print("Characteristic path length: " + str(characteristic_path_length(lattice)))
print("Clustering coefficient: " + str(clustering_coefficient(lattice)))