-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathq1k_init_tools.py
1306 lines (1045 loc) · 58.9 KB
/
q1k_init_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import mne
import numpy as np
import mne
import mne_bids
import plotly.express as px
import os
import re
import glob
from itertools import combinations
VALID_TASKS = ['rest', 'RS', 'as', 'AS', 'ssvep', 'vp', 'VEP', 'vs', 'VS', 'ap', 'AEP',
'go', 'GO', 'plr', 'mn', 'TO', 'nsp', 'fsp', 'PLR']
# define the function for generating the input path and file name
def generate_session_ids (dataset_group, project_path, site_code, task_id_in, subject_id_in, run_id):
if dataset_group == "control":
session_path_eeg = project_path + 'sourcefiles/' + subject_id_in + '/' + subject_id_in + '_eeg/'
session_file_name_eeg = glob.glob(session_path_eeg + '*_' + task_id_in + '_*.mff')
elif dataset_group == "experimental":
session_path_eeg = project_path + 'sourcedata/' + site_code + '/eeg/Q1K_' + site_code + '_' + subject_id_in + '/'
session_file_name_eeg = glob.glob(session_path_eeg + '*' + task_id_in + '*.mff')
print(session_path_eeg)
print(session_file_name_eeg)
session_path_et = project_path + 'sourcedata/' + site_code + '/et/Q1K_' + site_code + '_' + subject_id_in + '/'
session_file_name_et = glob.glob(session_path_et + '*' + task_id_in + '.asc')
print(session_path_et)
print(session_file_name_et)
return session_file_name_eeg, session_file_name_et
def set_family_code (session_code_in):
if session_code_in.startswith(("1025-", "1525-")):
# Remove the prefix and take the next four characters
family_code_out = session_code_in[5:9]
elif session_code_in.startswith(("100", "200")):
# Remove the first three characters and pad with zeros to make it four characters
family_code_out = session_code_in[3:].zfill(4)
else:
# If it doesn't match any pattern, return the original string or handle as needed
family_code_out = session_code_in
return family_code_out
def set_din_str (task_id_out):
# Create the task specific event string list (basically.. visual tasks = ('DIN2','DIN3') and auditory tasks = ('DIN4','DIN5'))
if task_id_out == 'AEP':
event_dict_offset = 1
din_str = ('DIN4','DIN5')
if task_id_out == 'AS':
event_dict_offset = 1
din_str = ('DIN2','DIN2')
if task_id_out == 'GO':
event_dict_offset = 1
din_str = ('DIN2','DIN3')
if task_id_out == 'TO':
event_dict_offset = 1
din_str = ('DIN4','DIN5')
if task_id_out == 'VEP':
event_dict_offset = 1
din_str = ('DIN2','DIN3')
if task_id_out == 'PLR':
event_dict_offset = 1
din_str = ('DIN2','DIN3')
if task_id_out == 'RS':
event_dict_offset = 1
din_str = ('DIN2','DIN3')
if task_id_out == 'VS':
event_dict_offset = 1
din_str = ('DIN2','DIN3')
if task_id_out == 'NSP':
event_dict_offset = 1
din_str = ('DIN2','DIN3')
return din_str, event_dict_offset
def get_din_diff(events, event_dict, din_str):
# get the distance between DIN events of interest
din_diffs = []
din_diffs_time = []
last_din = 0
# Iterate over the array
for row in events:
# Check if the third column corresponds to e1 or e2 values|
if row[2] == event_dict[din_str[0]] or row[2] == event_dict[din_str[0]]:
# Calculate the sequential difference between values in the first column
if last_din > 0:
din_diffs.append(row[0] - last_din)
din_diffs_time.append(row[0])
last_din = row[0]
else:
last_din = row[0]
#print(last_din)
return din_diffs, din_diffs_time
def din_check(event_dict, din_str):
# this is a patch that will become obsolete... accounting for missing DIN types in the recording..
exists_in_dict = [din in event_dict for din in din_str]
print(din_str)
print(exists_in_dict)
if all(exists_in_dict):
print("Both strings exist in eeg_event_dict.")
elif any(exists_in_dict):
existing_string = din_str[exists_in_dict.index(True)]
din_str = (existing_string, existing_string)
print(f"Only one string exists. din_str updated to: {din_str}")
else:
din_str=()
print("Neither DIN string exists in eeg_event_dict.")
print(din_str)
return din_str
def et_read(path,blink_interp,fill_nans,resamp):
#read the asc eye tracking data and convert it to a dataframe...
et_raw = mne.io.read_raw_eyelink(path)
et_raw.load_data()
#get the events from the annotation structure
et_annot_events, et_annot_event_dict = mne.events_from_annotations(et_raw)
#et_events = mne.find_events(et_raw, min_duration=0.01, shortest_event=1, uint_cast=True)
if blink_interp:
#read the raw et asc file again this time with the blinks annotation enabled.. (this should be combined into a single read)
print("Interpolating blinks.")
#et_raw = mne.io.read_raw_eyelink(path,create_annotations=["blinks"])
et_raw = mne.io.read_raw_eyelink(path,create_annotations=["blinks"])
et_raw.load_data()
#interpolate the signals during blinks
#mne.preprocessing.eyetracking.interpolate_blinks(et_raw, match=('BAD_blink','BAD_ACQ_SKIP'),buffer=(0.05, 0.2), interpolate_gaze=True)
mne.preprocessing.eyetracking.interpolate_blinks(et_raw,buffer=(0.05, 0.2), interpolate_gaze=True)
if fill_nans:
print("Filling NaNs with zeros.")
#replace Nans with 0s..
data = et_raw.get_data()
data[np.isnan(data)] = 0
et_raw._data = data
if resamp:
print("Resampling the data.")
#resample the data..
et_raw.resample(1000, npad="auto")
#create the dataframe
et_raw_df = et_raw.to_data_frame()
return et_raw, et_raw_df, et_annot_events, et_annot_event_dict
def get_event_dict(raw, events, offset):
stim_names = raw.copy().pick('stim').info['ch_names']
event_dict = {event: int(i) + offset
for i, event in enumerate(stim_names)
if event != 'STI 014'}
return event_dict
def eeg_clean_events(eeg_events, eeg_event_dict, din_str):
# remove TSYN events...this might have to happen for all tasks.. because this is not used for anything and they appear in arbitrary locations...
print('Removing TSYN events...')
mask = np.isin(eeg_events[:,2],[eeg_event_dict['TSYN']])
eeg_events = eeg_events[~mask]
#new_events = np.empty((0, 3))
if 'TSYN' in eeg_event_dict:
del eeg_event_dict['TSYN']
#remove 'DIN*' events that are not included in din_str
#filter the dictionary
filtered_dict = {k: v for k, v in eeg_event_dict.items() if not k.startswith('DIN') or k in din_str}
#reassign dict values sequentially
filtered_dict = {key: i + 1 for i, (key, _) in enumerate(filtered_dict.items())}
#update the events array
updated_events = np.array([
[row[0], row[1], filtered_dict[key]]
for row in eeg_events if (key := next((k for k, v in eeg_event_dict.items() if v == row[2]), None)) in filtered_dict
])
#update eeg_event_dict and eeg_events
eeg_event_dict = filtered_dict
eeg_events = updated_events
# print result
print("Updated Dictionary:", eeg_event_dict)
return eeg_events, eeg_event_dict
def eeg_task_events(eeg_events, eeg_event_dict, din_str, task_name=None):
din_offset = []
new_events = np.empty((0, 3))
if not task_name:
raise ValueError(f'please pass one of {VALID_TASKS}'
' to the task_name keyword argument.')
if task_name == 'PLR':
#find the first din_str event following plro events and add new *d events
for i, e in np.ndenumerate(eeg_events[:,2]):
if e == eeg_event_dict['plro']:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]] or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]]:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 1]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
#append new events to eeg_events
eeg_events = np.concatenate((eeg_events,new_events))
eeg_events = eeg_events[eeg_events[:,0].argsort()]
# add the new stimulus onset DIN labels to the event_dict..
eeg_event_dict['plro_d'] = len(eeg_event_dict) + 1
#select all of the newly categorized stimulus DIN events
mask = np.isin(eeg_events[:,2],[eeg_event_dict['plro_d']])
eeg_stims = eeg_events[mask]
print('Number of stimulus onset DIN events: ' + str(len(eeg_stims))) #the length of this array should equal the number of stimulus trials in the task
#calculate the inter trial interval between stimulus onset DIN events
eeg_iti = np.diff(eeg_stims[:,0])
elif task_name == 'VEP':
# find the first DIN3 event following either sv06 or sv15 events and add new *d events
# DIN3 is used here eventhough it is the second DIN in the visual stimulus inversion animations...
# DIN3 is used because because it is more reliable that DIN2 at the HSJ site and its offset from the intial DIN2 event is exactly determined by stimulus condition
# This is handled differently it the et_task_event function.. but because the stimulus sequence is exactly deterministic these always line up in practice
# I would continue to keep an eye on this...
for i, e in np.ndenumerate(eeg_events[:,2]):
if e == eeg_event_dict['sv06']:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]] or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]]:
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]] and din_str[1] == 'DIN3':
cor_val = 166
else:
cor_val = 0
new_row = np.array([[eeg_events[i[0] + 1, 0] - cor_val, 0, len(eeg_event_dict) + 1]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
if e == eeg_event_dict['sv15']:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]] or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]]:
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]] and din_str[1] == 'DIN3':
cor_val = 66
else:
cor_val = 0
new_row = np.array([[eeg_events[i[0] + 1, 0] - cor_val, 0, len(eeg_event_dict) + 2]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
# append new events to eeg_events
eeg_events = np.concatenate((eeg_events,new_events))
eeg_events = eeg_events[eeg_events[:,0].argsort()]
# add the new stimulus onset DIN labels to the event_dict..
eeg_event_dict['sv06_d'] = len(eeg_event_dict) + 1
eeg_event_dict['sv15_d'] = len(eeg_event_dict) + 1
#select all of the newly categorized stimulus DIN events
mask = np.isin(eeg_events[:,2],[eeg_event_dict['sv06_d'],eeg_event_dict['sv15_d']])
eeg_stims = eeg_events[mask]
print('Number of stimulus onset DIN events: ' + str(len(eeg_stims))) #the length of this array should equal the number of stimulus trials in the task
#calculate the inter trial interval between stimulus onset DIN events
eeg_iti = np.diff(eeg_stims[:,0])
elif task_name == 'ap' or task_name == 'AEP':
# find the first DIN4 event following either mmns or mmnt events and add new *d events
for i, e in np.ndenumerate(eeg_events[:,2]):
if e == eeg_event_dict['ae06']:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict['DIN4']:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 1]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
if e == eeg_event_dict['ae40']:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict['DIN4']:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 2]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
# append new events to eeg_events
eeg_events = np.concatenate((eeg_events,new_events))
eeg_events = eeg_events[eeg_events[:,0].argsort()]
# add the new stimulus onset DIN labels to the event_dict..
eeg_event_dict['ae06_d'] = len(eeg_event_dict) + 1
eeg_event_dict['ae40_d'] = len(eeg_event_dict) + 1
#select all of the newly categorized stimulus DIN events
mask = np.isin(eeg_events[:,2],[eeg_event_dict['ae06_d'],eeg_event_dict['ae40_d']])
eeg_stims = eeg_events[mask]
print('Number of stimulus onset DIN events: ' + str(len(eeg_stims))) #the length of this array should equal the number of stimulus trials in the task
#calculate the inter trial interval between stimulus onset DIN events
eeg_iti = np.diff(eeg_stims[:,0])
#elif task_name == 'go':
elif task_name=='go'or task_name == 'GO':
# find the first DIN4 event following either mmns or mmnt events and add new *d events
for i, e in np.ndenumerate(eeg_events[:,2]):
if 'DIN2' in din_str:
eeg_event_list = ['dfoc','dfbc','dfgc']
eeg_d_event_list = ['dfoc_d','dfbc_d','dfgc_d']
else:
eeg_event_list = ['dsoc','dsbc','dsgc']
eeg_d_event_list = ['dsoc_d','dsbc_d','dsgc_d']
if e == eeg_event_dict[eeg_event_list[0]]:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]] or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]]:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 1]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
if e == eeg_event_dict[eeg_event_list[1]]:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]] or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]]:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 2]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
if e == eeg_event_dict[eeg_event_list[2]]:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]] or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]]:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 3]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
# append new events to eeg_events
eeg_events = np.concatenate((eeg_events,new_events))
eeg_events = eeg_events[eeg_events[:,0].argsort()]
# add the new stimulus onset DIN labels to the event_dict..
eeg_event_dict[eeg_d_event_list[0]] = len(eeg_event_dict) + 1
eeg_event_dict[eeg_d_event_list[1]] = len(eeg_event_dict) + 1
eeg_event_dict[eeg_d_event_list[2]] = len(eeg_event_dict) + 1
#select all of the newly categorized stimulus DIN events
mask = np.isin(eeg_events[:,2],[eeg_event_dict[eeg_d_event_list[0]],eeg_event_dict[eeg_d_event_list[1]],eeg_event_dict[eeg_d_event_list[2]]])
eeg_stims = eeg_events[mask]
print('Number of stimulus onset DIN events: ' + str(len(eeg_stims))) #the length of this array should equal the number of stimulus trials in the task
#calculate the inter trial interval between stimulus onset DIN events
eeg_iti = np.diff(eeg_stims[:,0])
elif task_name=='vs'or task_name == 'VS':
# find the first DIN4 event following either mmns or mmnt events and add new *d events
for i, e in np.ndenumerate(eeg_events[:,2]):
#eeg_event_list = ['df', 'ds']
#if e in {value for key, value in eeg_event_dict.items() if key.startswith(('df','ds'))}:
if e in {value for key, value in eeg_event_dict.items() if key.startswith(('da'))}:
if i[0]+1 < len(eeg_events[:,2]):
#if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]] or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]]:
if eeg_events[i[0]+1, 2] == eeg_event_dict['DIN3']: #or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]]:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 1]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
# append new events to eeg_events
eeg_events = np.concatenate((eeg_events,new_events))
eeg_events = eeg_events[eeg_events[:,0].argsort()]
# add the new stimulus onset DIN labels to the event_dict..
eeg_event_dict['da_d'] = len(eeg_event_dict) + 1
#select all of the newly categorized stimulus DIN events
mask = np.isin(eeg_events[:,2],[eeg_event_dict['da_d']])
eeg_stims = eeg_events[mask]
print('Number of stimulus onset DIN events: ' + str(len(eeg_stims))) #the length of this array should equal the number of stimulus trials in the task
#calculate the inter trial interval between stimulus onset DIN events
eeg_iti = np.diff(eeg_stims[:,0])
elif task_name=='nsp'or task_name == 'NSP':
# find the first DIN4 event following either mmns or mmnt events and add new *d events
for i, e in np.ndenumerate(eeg_events[:,2]):
if e in {value for key, value in eeg_event_dict.items() if key.startswith(('dfns'))}:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict['DIN3']: #or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]]:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 1]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
# append new events to eeg_events
eeg_events = np.concatenate((eeg_events,new_events))
eeg_events = eeg_events[eeg_events[:,0].argsort()]
# add the new stimulus onset DIN labels to the event_dict..
eeg_event_dict['dfns_d'] = len(eeg_event_dict) + 1
#select all of the newly categorized stimulus DIN events
mask = np.isin(eeg_events[:,2],[eeg_event_dict['dfns_d']])
eeg_stims = eeg_events[mask]
print('Number of stimulus onset DIN events: ' + str(len(eeg_stims))) #the length of this array should equal the number of stimulus trials in the task
#calculate the inter trial interval between stimulus onset DIN events
eeg_iti = np.diff(eeg_stims[:,0])
elif task_name=='mn' or task_name=='TO':
s_ind = [value for key, value in eeg_event_dict.items() if key.startswith('SO')]
t_ind = [value for key, value in eeg_event_dict.items() if key.startswith('Dev')]
# find the first DIN4 event following either mmns or mmnt events and add new *d events
for i, e in np.ndenumerate(eeg_events[:,2]):
if e in s_ind:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict['DIN4']:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 1]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
if e in t_ind:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict['DIN4']:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 2]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
# append new events to eeg_events
eeg_events = np.concatenate((eeg_events,new_events))
eeg_events = eeg_events[eeg_events[:,0].argsort()]
# add the new stimulus onset DIN labels to the event_dict..
eeg_event_dict['to_s_d'] = len(eeg_event_dict) + 1
eeg_event_dict['to_t_d'] = len(eeg_event_dict) + 1
#select all of the newly categorized stimulus DIN events
mask = np.isin(eeg_events[:,2],[eeg_event_dict['to_s_d'],eeg_event_dict['to_t_d']])
eeg_stims = eeg_events[mask]
print('Number of stimulus onset DIN events: ' + str(len(eeg_stims))) #the length of this array should equal the number of stimulus trials in the task
#calculate the inter trial interval between stimulus onset DIN events
eeg_iti = np.diff(eeg_stims[:,0])
elif task_name=='rest' or task_name=='RS':
v_ind = [value for key, value in eeg_event_dict.items() if key.startswith('vs')]
b_ind = [value for key, value in eeg_event_dict.items() if key.startswith('dbrk')]
# find the first DIN4 event following either mmns or mmnt events and add new *d events
for i, e in np.ndenumerate(eeg_events[:,2]):
if e in v_ind:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict['DIN2']:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 1]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
if e in b_ind:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict['DIN2']:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 2]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
#eeg_events[i[0]+1, 2] = len(eeg_event_dict) + 2 #mmnt DIN onset
#new_events.append([eeg_events[i[0], 0], 0 , len(eeg_event_dict) + 2])
#new_events = np.append(new_events,[eeg_events[i[0], 0], 0, len(eeg_event_dict) + 2], axis=0)
#din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
# append new events to eeg_events
eeg_events = np.concatenate((eeg_events,new_events))
eeg_events = eeg_events[eeg_events[:,0].argsort()]
# add the new stimulus onset DIN labels to the event_dict..
eeg_event_dict['vs_d'] = len(eeg_event_dict) + 1
eeg_event_dict['brk_d'] = len(eeg_event_dict) + 1
#select all of the newly categorized stimulus DIN events
mask = np.isin(eeg_events[:,2],[eeg_event_dict['vs_d'],eeg_event_dict['brk_d']])
eeg_stims = eeg_events[mask]
print('Number of stimulus onset DIN events: ' + str(len(eeg_stims))) #the length of this array should equal the number of stimulus trials in the task
#calculate the inter trial interval between stimulus onset DIN events
eeg_iti = np.diff(eeg_stims[:,0])
elif task_name == 'as' or task_name == 'AS':
d_ind = [value for key, value in eeg_event_dict.items() if key.startswith('dd')]
t_ind = [value for key, value in eeg_event_dict.items() if key.startswith('dt')]
# find the first DIN3 or DIN4 event following either mmns or mmnt events and add new *d events
for i, e in np.ndenumerate(eeg_events[:,2]):
if e in d_ind:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]]:# or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]]:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 1]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
if e in t_ind:
if i[0]+1 < len(eeg_events[:,2]):
if eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[0]]:# or eeg_events[i[0]+1, 2] == eeg_event_dict[din_str[1]]:
new_row = np.array([[eeg_events[i[0] + 1, 0], 0, len(eeg_event_dict) + 2]])
new_events = np.append(new_events,new_row, axis=0)
din_offset.append(eeg_events[i[0]+1, 0] - eeg_events[i[0], 0])
# append new events to eeg_events
eeg_events = np.concatenate((eeg_events,new_events))
eeg_events = eeg_events[eeg_events[:,0].argsort()]
# add the new stimulus onset DIN labels to the event_dict..
eeg_event_dict['dd_d'] = len(eeg_event_dict) + 1
eeg_event_dict['dt_d'] = len(eeg_event_dict) + 1
#select all of the newly categorized stimulus DIN events
mask = np.isin(eeg_events[:,2],[eeg_event_dict['dd_d'],eeg_event_dict['dt_d']])
eeg_stims = eeg_events[mask]
print('Number of stimulus onset DIN events: ' + str(len(eeg_stims))) #the length of this array should equal the number of stimulus trials in the task
#calculate the inter trial interval between stimulus onset DIN events
eeg_iti = np.diff(eeg_stims[:,0])
elif task_name in ['vs', 'fsp', 'nsp']:
raise NotImplemented
else:
raise ValueError('Could not determine task name.'
f' Expected one of {VALID_TASKS} but got {task_name}')
#rename DIN* events to eeg_DIN*
renamed_dict = {
(f"eeg_{key}" if key.startswith('DIN') else key): value
for key, value in eeg_event_dict.items()
}
eeg_event_dict = renamed_dict
# print result
print("Updated Dictionary:", eeg_event_dict)
return eeg_events, eeg_stims, eeg_iti, din_offset, eeg_event_dict, new_events
def et_clean_events(et_annot_event_dict, et_annot_events):
#remove dictionary keys that start with "TRACKER_TIME"
#filtered_dict = {k: v for k, v in et_annot_event_dict.items() if not k.startswith("TRACKER_TIME")}
filtered_dict = {k: v for k, v in et_annot_event_dict.items() if "TRACKER_TIME" not in k and "SYNC FRAME" not in k}
#update dictionary values to be consecutive
updated_dict = {k: i + 1 for i, (k, _) in enumerate(filtered_dict.items())}
#remove rows from the array corresponding to removed keys
valid_values = set(filtered_dict.values())
filtered_events = np.array([row for row in et_annot_events if row[2] in valid_values])
#update array values to match the updated dictionary
value_map = {v: updated_dict[k] for k, v in filtered_dict.items()}
updated_events = np.array([[row[0], row[1], value_map[row[2]]] for row in filtered_events])
# Results
et_annot_event_dict = updated_dict
et_annot_events = updated_events
#clean keys by removing numeric prefixes
cleaned_dict = {}
index_map = {}
for key, value in et_annot_event_dict.items():
#remove leading numbers and dashes/spaces using regex
clean_key = re.sub(r'^[-\d\s]+', '', key) # Remove leading digits, dashes, and spaces
if clean_key not in cleaned_dict:
cleaned_dict[clean_key] = value
else:
cleaned_dict[clean_key] = min(cleaned_dict[clean_key], value) # Keep smallest index
index_map[value] = clean_key # Map original indices to cleaned keys
#create a new dictionary with cleaned keys and assign unique indices
new_dict = {key: idx + 1 for idx, key in enumerate(sorted(cleaned_dict.keys()))}
#build a full mapping of old indices to new indices
old_to_new_mapping = {old_idx: new_dict[cleaned_key] for old_idx, cleaned_key in index_map.items()}
#update et_annot_events
updated_column = [old_to_new_mapping.get(value, -1) for value in et_annot_events[:, 2]]
#check for unmatched values
if -1 in updated_column:
unmatched = [value for value in et_annot_events[:, 2] if value not in old_to_new_mapping]
raise ValueError(f"Unmatched values in et_annot_events[:, 2]: {unmatched}")
#apply the updates
et_annot_events[:, 2] = updated_column
# Final results
et_annot_event_dict = new_dict
return et_annot_event_dict, et_annot_events
def et_task_events(et_raw_df, et_annot_event_dict, et_annot_events, task_id, din_str):
# fill NaNs in DIN channel with zeros
et_raw_df['DIN']=et_raw_df['DIN'].fillna(0)
# Correct blips to zero for a single sample while DIN8 is on.
for ind, row in et_raw_df.iterrows():
if ind < len(et_raw_df)-1:
if ind > 0:
if et_raw_df['DIN'][ind] == 0:
if et_raw_df['DIN'][ind-1] == 8:
if et_raw_df['DIN'][ind+1] == 8:
et_raw_df['DIN'].loc[ind] = 8
# convert the ET DIN channel into ET events
# find when the DIN channel changes values
et_raw_df['DIN_diff']=et_raw_df['DIN'].diff()
# select all non-zero DIN changes
et_din_events=et_raw_df.loc[et_raw_df['DIN_diff']>0]
if task_id == 'VEP' or task_id == 'PLR' or task_id == 'GO' or task_id == 'VS' or task_id == 'NSP':
# there should only be DIN 2 and 4 in the Q1K visual tasks.. however there are frequently binary values greater than 4 indicating that there are anomalous pin4 and pin5 pulses
# bin2=pin2, bin4=pin3, bin8=pin4, bin16=pin5, bin18=pin2+pin5, bin20=pin3+pin5, bin24=pin4+pin5, bin26=pin2+pin4+pin5, bin28=pin3+pin4+pin5
# given these anomalous pin4 and pin5 pulses the conversion at pin change time is: binary 2,18,26 = 2, and binary 4,20,28 = 4
# perform the anomalous DIN conversion
et_din_events = et_din_events.copy()
et_din_events['DIN'].loc[et_din_events['DIN'].isin([2,18,26])] = 2
et_din_events['DIN'].loc[et_din_events['DIN'].isin([4,20,28])] = 4
#et_din_events['DIN'].loc[et_din_events['DIN'].isin([4,20,24,28])] = 4
et_din_events = et_din_events.copy()
et_din_events=et_din_events.loc[et_raw_df['DIN'].isin([2,4])]
et_din_events = et_din_events.reset_index()
et_din_events['DIN_diff'] = et_din_events['DIN_diff'].astype(int)
et_din_events
#convert DIN_diff to integers
et_din_events['DIN_diff'] = et_din_events['DIN_diff'].astype(int)
#add DIN events to et_annot_event_dict with the next available small integer
existing_indices = set(et_annot_event_dict.values())
next_index = max(existing_indices) + 1
for din_diff in et_din_events['DIN_diff']:
din_key = f'DIN{din_diff}'
if din_key not in et_annot_event_dict:
et_annot_event_dict[din_key] = next_index
next_index += 1
#create new rows for et_annot_events based on et_din_events
#map DIN_diff to the new dictionary indices
et_din_events['mapped_value'] = et_din_events['DIN_diff'].map(lambda x: et_annot_event_dict[f'DIN{x}'])
#add new rows to et_annot_events
new_events = np.array([[row['index'], 0, row['mapped_value']] for _, row in et_din_events.iterrows()])
et_annot_events = np.vstack((et_annot_events, new_events))
#sort the updated et_annot_events array by the first column (timestamps)
et_annot_events = et_annot_events[np.argsort(et_annot_events[:, 0])]
et_annot_events = et_annot_events.astype(int)
if task_id == 'VEP':
target_values = {et_annot_event_dict['STIM'], et_annot_event_dict['CS_SPIN']}
#initialize results and tracking for pruning
result_events = []
pruned_indices = set()
#iterate through rows and apply pruning for 'STIM' and 'CS_SPIN'
for i, row in enumerate(et_annot_events):
if i in pruned_indices:
continue #skip rows already excluded
if row[2] in target_values:
#add the first occurrence of 'STIM' or 'CS_SPIN'
result_events.append(row)
#exclude rows of the same type within +500 range
pruned_indices.update(
j for j, other_row in enumerate(et_annot_events)
#if abs(other_row[0] - row[0]) <= 500 and other_row[2] == row[2]
if other_row[0] - row[0] <= 1000 and other_row[2] == row[2]
)
else:
#retain rows unrelated to 'STIM' or 'CS_SPIN'
result_events.append(row)
#convert results back to a numpy array
result_events = np.array(result_events)
et_annot_events=result_events
# add a new key for 'STIM_d' in the dictionary
stim_d_value = max(et_annot_event_dict.values()) + 1
et_annot_event_dict['STIM_d'] = stim_d_value
#process rows to handle 'DIN2' and 'DIN4' for each 'STIM'
new_rows = []
used_indices = set() # To ensure only the first 'DIN2' or 'DIN4' is used
for stim_index, stim_row in enumerate(et_annot_events):
if stim_row[2] == et_annot_event_dict['STIM']:
stim_time = stim_row[0] # First column of the 'STIM' row
stim_d_time = None
# Look for the first 'DIN2' within 1000 ms after this 'STIM'
for i in range(stim_index + 1, len(et_annot_events)):
din2_row = et_annot_events[i]
if 'DIN2' in et_annot_event_dict:
if (
din2_row[2] == et_annot_event_dict['DIN2'] and
i not in used_indices and
0 <= din2_row[0] - stim_time <= 1000
):
stim_d_time = din2_row[0] # Use 'DIN2' time directly
new_rows.append([stim_d_time, 0, stim_d_value])
used_indices.add(i)
break
# If no 'DIN2' is found, look for the first 'DIN4' and calculate midpoint if necessary
if stim_d_time is None:
first_din4_time = None
second_din4_time = None
for i in range(stim_index + 1, len(et_annot_events)):
din4_row = et_annot_events[i]
if (
din4_row[2] == et_annot_event_dict['DIN4'] and
i not in used_indices and
0 <= din4_row[0] - stim_time <= 1000
):
if first_din4_time is None:
first_din4_time = din4_row[0]
used_indices.add(i)
elif second_din4_time is None:
second_din4_time = din4_row[0]
break
# If two DIN4s are found, calculate the midpoint
if first_din4_time is not None and second_din4_time is not None:
stim_d_time = first_din4_time - (second_din4_time - first_din4_time) // 2
new_rows.append([stim_d_time, 0, stim_d_value])
#add the new rows to the existing events
et_annot_events = np.vstack([et_annot_events, new_rows])
#sort the array by the first column for clarity (optional)
et_annot_events = et_annot_events[et_annot_events[:, 0].argsort()]
if task_id == 'PLR':
target_values = {et_annot_event_dict['STIM'], et_annot_event_dict['FIX'], et_annot_event_dict['ISI']}
#initialize results and tracking for pruning
result_events = []
pruned_indices = set()
#iterate through rows and apply pruning for target)values
for i, row in enumerate(et_annot_events):
if i in pruned_indices:
continue #skip rows already excluded
if row[2] in target_values:
#add the first occurrence of target_values
result_events.append(row)
#exclude rows of the same type within +500 range
pruned_indices.update(
j for j, other_row in enumerate(et_annot_events)
#if abs(other_row[0] - row[0]) <= 500 and other_row[2] == row[2]
if other_row[0] - row[0] <= 1000 and other_row[2] == row[2]
)
else:
#retain rows unrelated to target_values
result_events.append(row)
#convert results back to a numpy array
result_events = np.array(result_events)
et_annot_events=result_events
# add a new key for 'STIM_d' in the dictionary
stim_d_value = max(et_annot_event_dict.values()) + 1
et_annot_event_dict['STIM_d'] = stim_d_value
#process rows to handle 'DIN2' and 'DIN4' for each 'STIM'
new_rows = []
used_indices = set() # To ensure only the first 'DIN2' or 'DIN4' is used
for stim_index, stim_row in enumerate(et_annot_events):
if stim_row[2] == et_annot_event_dict['STIM']:
stim_time = stim_row[0] # First column of the 'STIM' row
stim_d_time = None
# Look for the first 'DIN2' within 1000 ms after this 'STIM'
if 'DIN2' in et_annot_event_dict:
for i in range(stim_index + 1, len(et_annot_events)):
din2_row = et_annot_events[i]
if (
din2_row[2] == et_annot_event_dict['DIN2'] and
i not in used_indices and
0 <= din2_row[0] - stim_time <= 1000
):
stim_d_time = din2_row[0] # Use 'DIN2' time directly
new_rows.append([stim_d_time, 0, stim_d_value])
used_indices.add(i)
break
# If no 'DIN2' is found, look for the first 'DIN4' and calculate midpoint if necessary
if stim_d_time is None:
if 'DIN4' in et_annot_event_dict:
first_din4_time = None
second_din4_time = None
for i in range(stim_index + 1, len(et_annot_events)):
din4_row = et_annot_events[i]
if (
din4_row[2] == et_annot_event_dict['DIN4'] and
i not in used_indices and
0 <= din4_row[0] - stim_time <= 1000
):
stim_d_time = din4_row[0] # Use 'DIN2' time directly
new_rows.append([stim_d_time, 0, stim_d_value])
used_indices.add(i)
break
#add the new rows to the existing events
et_annot_events = np.vstack([et_annot_events, new_rows])
#sort the array by the first column for clarity (optional)
et_annot_events = et_annot_events[et_annot_events[:, 0].argsort()]
if task_id == 'GO':
target_values = {et_annot_event_dict['CS_ONSET'], et_annot_event_dict['CS_SPIN'], et_annot_event_dict['ONSET_200MS'], et_annot_event_dict['ONSET_PS'], et_annot_event_dict['REWARD_ONSET']}
#target_values = {et_annot_event_dict['CS_SPIN']}
#initialize results and tracking for pruning
result_events = []
pruned_indices = set()
#iterate through rows and apply pruning for target_values
for i, row in enumerate(et_annot_events):
if i in pruned_indices:
continue #skip rows already excluded
if row[2] in target_values:
#add the first occurrence of target_values
result_events.append(row)
#exclude rows of the same type within +500 range
pruned_indices.update(
j for j, other_row in enumerate(et_annot_events)
#if abs(other_row[0] - row[0]) <= 500 and other_row[2] == row[2]
if other_row[0] - row[0] <= 1000 and other_row[2] == row[2]
)
else:
#retain rows unrelated to target_values
result_events.append(row)
#convert results back to a numpy array
result_events = np.array(result_events)
et_annot_events=result_events
# add a new key for 'STIM_d' in the dictionary
stim_d_value = max(et_annot_event_dict.values()) + 1
et_annot_event_dict['STIM_d'] = stim_d_value
#process rows to handle 'DIN2' and 'DIN4' for each 'STIM'
new_rows = []
used_indices = set() # To ensure only the first 'DIN2' or 'DIN4' is used
if 'DIN2' in din_str:
et_event_list = ['CS_ONSET']
din_name = 'DIN2'
#eeg_d_event_list = ['dfoc_d','dfbc_d','dfgc_d']
else:
et_event_list = ['CS_SPIN']
din_name = 'DIN4'
#eeg_d_event_list = ['dsoc_d','dsbc_d','dsgc_d']
for stim_index, stim_row in enumerate(et_annot_events):
if stim_row[2] == et_annot_event_dict[et_event_list[0]]:
stim_time = stim_row[0] # First column of the 'STIM' row
stim_d_time = None
# Look for the first 'DIN2' within 1000 ms after this 'STIM'
if din_name in et_annot_event_dict:
for i in range(stim_index + 1, len(et_annot_events)):
din2_row = et_annot_events[i]
if (
din2_row[2] == et_annot_event_dict[din_name] and
i not in used_indices and
0 <= din2_row[0] - stim_time <= 500
):
stim_d_time = din2_row[0] # Use 'DIN2' time directly
new_rows.append([stim_d_time, 0, stim_d_value])
used_indices.add(i)
break
#add the new rows to the existing events
et_annot_events = np.vstack([et_annot_events, new_rows])
#sort the array by the first column for clarity (optional)
et_annot_events = et_annot_events[et_annot_events[:, 0].argsort()]
if task_id == 'VS':
target_values = {et_annot_event_dict['APPLE_FLY_IN'], et_annot_event_dict['DISPLAY_REWARD']}
#target_values = {et_annot_event_dict['CS_SPIN']}
#initialize results and tracking for pruning
result_events = []
pruned_indices = set()
#iterate through rows and apply pruning for target_values
for i, row in enumerate(et_annot_events):
if i in pruned_indices:
continue #skip rows already excluded
if row[2] in target_values:
#add the first occurrence of target_values
result_events.append(row)
#exclude rows of the same type within +500 range
pruned_indices.update(
j for j, other_row in enumerate(et_annot_events)
#if abs(other_row[0] - row[0]) <= 500 and other_row[2] == row[2]
if other_row[0] - row[0] <= 1200 and other_row[2] == row[2]
)
else:
#retain rows unrelated to target_values
result_events.append(row)
#convert results back to a numpy array
result_events = np.array(result_events)
et_annot_events=result_events
# add a new key for 'STIM_d' in the dictionary
stim_d_value = max(et_annot_event_dict.values()) + 1
et_annot_event_dict['STIM_d'] = stim_d_value
#process rows to handle 'DIN2' and 'DIN4' for each 'STIM'
new_rows = []
used_indices = set() # To ensure only the first 'DIN2' or 'DIN4' is used
#et_event_list = ['DISPLAY_FIXATION','DISPLAY_SEARCH']
et_event_list = ['APPLE_FLY_IN']
din_name = 'DIN4'
for stim_index, stim_row in enumerate(et_annot_events):
if stim_row[2] == et_annot_event_dict[et_event_list[0]]: #or stim_row[2] == et_annot_event_dict[et_event_list[1]]:
stim_time = stim_row[0] # First column of the 'STIM' row
stim_d_time = None
# Look for the first 'DIN2' within 1000 ms after this 'STIM'
if din_name in et_annot_event_dict:
for i in range(stim_index + 1, len(et_annot_events)):
din2_row = et_annot_events[i]
if (
din2_row[2] == et_annot_event_dict[din_name] and
i not in used_indices and
0 <= din2_row[0] - stim_time <= 500
):
stim_d_time = din2_row[0] # Use 'DIN2' time directly
new_rows.append([stim_d_time, 0, stim_d_value])
used_indices.add(i)
break
#add the new rows to the existing events
et_annot_events = np.vstack([et_annot_events, new_rows])
#sort the array by the first column for clarity (optional)
et_annot_events = et_annot_events[et_annot_events[:, 0].argsort()]
if task_id == 'NSP':
target_values = {et_annot_event_dict['CALIB_ANIMATION_ONSET']}
#target_values = {et_annot_event_dict['CS_SPIN']}
#initialize results and tracking for pruning
result_events = []
pruned_indices = set()
#iterate through rows and apply pruning for target_values
for i, row in enumerate(et_annot_events):
if i in pruned_indices:
continue #skip rows already excluded
if row[2] in target_values:
#add the first occurrence of target_values
result_events.append(row)
#exclude rows of the same type within +500 range
pruned_indices.update(
j for j, other_row in enumerate(et_annot_events)
#if abs(other_row[0] - row[0]) <= 500 and other_row[2] == row[2]
if other_row[0] - row[0] <= 1200 and other_row[2] == row[2]
)
else:
#retain rows unrelated to target_values
result_events.append(row)
#convert results back to a numpy array
result_events = np.array(result_events)
et_annot_events=result_events
# add a new key for 'STIM_d' in the dictionary
stim_d_value = max(et_annot_event_dict.values()) + 1
et_annot_event_dict['STIM_d'] = stim_d_value
#process rows to handle 'DIN2' and 'DIN4' for each 'STIM'
new_rows = []
used_indices = set() # To ensure only the first 'DIN2' or 'DIN4' is used
et_event_list = ['CALIB_ANIMATION_ONSET']
din_name = 'DIN4'