Access the HPC environment via ssh (on Jupyter Hub Terminal or from a Linux Terminal, via srvlogin).
ssh loginapl01
**It is a requirement to have conda or miniconda loaded on the system.
if [ -d /lustre/t0/scratch/users/`whoami` ]; then
export ALTHOME=/lustre/t0/scratch/users/`whoami`/slurm-home
export PATH=$PATH:${ALTHOME}/bin
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:+${LD_LIBRARY_PATH}:}${ALTHOME}/lib
export XDG_DATA_HOME=${ALTHOME}/share
export XDG_CONFIG_HOME=${ALTHOME}/etc
export XDG_STATE_HOME=${ALTHOME}/var
export XDG_CACHE_HOME=${ALTHOME}/var/cache
fi
git clone https://github.com/linea-it/pz-compute && cd pz-compute
export REPO_DIR=`pwd`
conda create --name pz_compute python=3.10
conda activate pz_compute
. ./rail_scripts/install-pz-rail
pip install -r rail_scripts/requirements.txt
cat <<EOF > env.sh
conda activate pz_compute
export PZPATH=$REPO_DIR/rail_scripts/
export PATH=\$PATH:\$PZPATH
EOF
chmod +x env.sh
source env.sh
mkdir sandbox && cd sandbox
ln -s $REPO_DIR/scheduler_examples/slurm/rail-slurm/rail-slurm.batch .
ln -s $REPO_DIR/scheduler_examples/slurm/rail-slurm/rail-slurm.py .
## copy or create symbolic link the input files (pre processing outputs)
mkdir input
mkdir output
## copy or create symbolic link the estimator_{algoritm}.pkl file
cp <your estimator_{algoritm}.pkl> .
cc -o slurm-shield ../utils/slurm/slurm-shield.c
sbatch -n2 -N1 rail-slurm.batch # using only 2 cores