-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathscUnif.py
249 lines (218 loc) · 10.3 KB
/
scUnif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
##
## Gibbs EM for modeling bulk and single cell RNA seq data
##
## Copyright Lingxue Zhu ([email protected]).
## All Rights Reserved.
##
## #################
## -- parameters:
## A: N x K, gene expression profiles; colSums(A) = 1
## G: {1, ..., K}^L, cell type
## mu_kappa, mu_tau, sigma_kappa^-2, sigma_tau^-2
## alpha: K x 1
##
## Signel cell model:
## -- latent variables (same as a Bayesian logistic regression model):
## (kappa_l, tau_l) ~ N( (mu_kappa, mu_tau), diag(sigma_kappa^2, sigma_tau^2) )
## S_li ~ Bernoulli( logistic(Psi_li) )
## where Psi_li = kappa_l + tau_l * A[i, G[l]]
##
## -- observed data:
## Y_l ~ Multinomial(R_l, probs_l): N x 1
## where R_l = sum(Y_l) read depth; probs_l = normalize(A[, G[l]] * S[, l])
##
## Bulk model:
## -- latent variable:
## W_j ~ Dirichlet(alpha): K x 1
##
## -- observed data:
## X_j ~ Multinomial(R_j, A W_j): N x 1
##
## #################
## Gibbs sampling:
##
## Single cell: use data augmentation (Polson and Scott (2013))
## -- w_li ~ PG(1, 0), Polya-Gamma latent variables
##
## -- Key: the likelihood can be written as:
## p(kappa, tau | mu, sigma) * p(S | kappa, tau, A) * p(Y | S, A)
## \propto p(kappa, tau | mu, sigma) * ( E_w{ f(w, kappa, tau, S, A)} ) * p(Y | S, A)
## (where E_w is the expectation taken over w ~ PG(1, 0))
## \propto integral_w{ p(kappa, tau | mu, sigma) * f(w, kappa, tau, S, A) * p(w) * p(Y | S, A)}
##
## hence we get a "complete" likelihood for p(kappa, tau, w, S, Y | mu, sigma, A)
## and we get the target posterior after marginalize out w
##
## Bulk: use alternative parametrization:
## -- W_j ~ Dirichlet(alpha): K x 1
## Z'_rj ~ Multinomial(1, W_j): K x 1, for r=1, ..., R_j
## d_rj ~ Multinomial(1, A Z'_rj): N x 1
## X_j = sum_r d_rj
##
## -- Key: note that we don't need to get all samples for d and Z'
## Especially, for all feasible d, let
## Z_ij = sum_{r: d_rj=i} Z'_rj
## then
## Z_ij | d, X, W ~ Multinomial(X_ij, normalized(W_j * A[i,:]))
## W_j | d, X, Z ~ Dirichlet( alpha + sum_i Z_ij )
##
## ##################
from __future__ import with_statement
from gem import *
import numpy as np
import logging, json, sys, os, argparse, datetime, time
###################################
## file I/O
###################################
def gem2csv(dirname, gem, prefix=""):
prefix = dirname + "/" + prefix
mtx2csv(prefix + 'est_A.csv', gem.A)
# mtx2csv(prefix + 'path_elbo.csv', gem.path_elbo)
if gem.hasSC:
mtx2csv(prefix + 'exp_S.csv', gem.suff_stats['exp_S'])
mtx2csv(prefix + 'est_pkappa.csv', gem.pkappa)
mtx2csv(prefix + 'est_kappa.csv', gem.suff_stats["exp_kappa"].transpose())
mtx2csv(prefix + 'est_ptau.csv', gem.ptau)
mtx2csv(prefix + 'est_tau.csv', gem.suff_stats["exp_tau"].transpose())
if gem.hasBK:
mtx2csv(prefix + 'est_alpha.csv', gem.alpha)
mtx2csv(prefix + 'exp_W.csv', gem.suff_stats['exp_W'])
def mtx2csv(filename, nparray):
with open(filename, 'w') as handle:
np.savetxt(handle, nparray, delimiter=',')
def load_from_file(filename, dtype=float, delimiter=","):
if filename is None:
return None
else:
return np.loadtxt(filename, dtype=dtype, delimiter=delimiter)
###############
## read data from files
###############
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-sc", "--single_cell_expr_file", type=str, default=None)
parser.add_argument("-bk", "--bulk_expr_file", type=str, default=None)
parser.add_argument("-ctype", "--single_cell_type_file", type=str, default=None)
# parser.add_argument("-anchor", "--anchor_gene_file", type=str, default=None)
parser.add_argument("-K", "--number_of_cell_types", type=int, default=3)
parser.add_argument("-iMarkers", "--iMarkers_file", type=str, default=None)
parser.add_argument("-init_A", "--initial_A_file", type=str, default=None)
parser.add_argument("-min_A", "--mininimal_A", type=float, default=1e-6)
parser.add_argument("-init_alpha", "--initial_alpha_file", type=str, default=None)
# parser.add_argument("-est_alpha", "--estimate_alpha", type=bool, default=False)
parser.add_argument('-no_est_alpha', '--no_est_alpha', dest='est_alpha', action='store_false')
parser.set_defaults(est_alpha=True)
parser.add_argument("-pkappa", "--initial_kappa_mean_var", nargs=2, type=float,
action='store', default=None)
parser.add_argument("-ptau", "--initial_tau_mean_var", nargs=2, type=float,
action='store', default=None)
parser.add_argument("-burnin", "--burn_in_length", type=int, default=50)
parser.add_argument("-sample", "--gibbs_sample_number", type=int, default=50)
parser.add_argument("-thin", "--gibbs_thinning", type=int, default=1)
parser.add_argument('-no_mean_approx', '--no_mean_approx',
dest='bk_mean_approx', action='store_false')
parser.add_argument('-mean_approx', '--mean_approx',
dest='bk_mean_approx', action='store_true')
parser.set_defaults(bk_mean_approx=True)
parser.add_argument("-MLE_CONV", "--Mstep_convergence_tol", type=float, default=1e-6)
parser.add_argument("-EM_CONV", "--EM_convergence_tol", type=float, default=1e-6)
parser.add_argument("-MLE_maxiter", "--Mstep_maxiter", type=int, default=500)
parser.add_argument("-EM_maxiter", "--EM_maxiter", type=int, default=50)
parser.add_argument("-log", "--logging_file", type=str, default="gem_log.log")
parser.add_argument("-outdir", "--output_directory", type=str, default="out/")
parser.add_argument("-outname", "--output_prefix", type=str, default="gemout_")
parser.add_argument("-verbose", "--verbose_level", type=int, default=1)
args = parser.parse_args()
## verbose level
if args.verbose_level <= 0:
level = logging.ERROR
elif args.verbose_level == 1:
level = logging.INFO
elif args.verbose_level >= 2:
level = logging.DEBUG
## set up logging
logdir = os.path.dirname(args.logging_file)
if len(logdir) > 0 and not os.path.exists(logdir):
os.makedirs(logdir)
logging.basicConfig(level=level, filename= "%s" % args.logging_file,
format = '%(message)s',
filemode= 'w')
# define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(level)
console.setFormatter(logging.Formatter('%(message)s'))
logging.getLogger('').addHandler(console)
## display general information
header_info = "#" * 80 + "\n"
header_info += "Gibbs-EM for %d cell types.\n" % args.number_of_cell_types
header_info += "Date and time: " + str(datetime.datetime.today()) + "\n"
header_info += "Algorithm arguments:\n"
for (argname, argvalue) in vars(args).iteritems():
header_info += "\t--" + argname + ": " + str(argvalue) + "\n"
header_info += "#" * 80
logging.info(header_info)
## read data from .csv files
logging.info("Loading data ...")
SCexpr = load_from_file(args.single_cell_expr_file)
BKexpr = load_from_file(args.bulk_expr_file)
G = load_from_file(args.single_cell_type_file, dtype=int)
init_A = load_from_file(args.initial_A_file)
init_alpha = load_from_file(args.initial_alpha_file)
iMarkers = load_from_file(args.iMarkers_file, dtype=int)
K = args.number_of_cell_types
## when K=1, init_A should still be a matrix instead of a vector
if init_A is not None and len(init_A.shape)==1:
init_A = init_A[:, np.newaxis]
## check that input data are valid
if SCexpr is None and BKexpr is None:
logging.error("ERROR: Must provide at least one of single cell or bulk data.")
sys.exit(1)
elif SCexpr is not None and BKexpr is not None and SCexpr.shape[1] != BKexpr.shape[1]:
logging.error("ERROR: Single cell and bulk data must have same number of genes.")
sys.exit(1)
if SCexpr is not None:
if G is None:
logging.error("ERROR: Must provide cell type information for single cells.")
sys.exit(1)
elif SCexpr.shape[0] != G.shape[0]:
logging.error("ERROR: Mismatched cell dimensions in `%s` and `%s`",
args.single_cell_expr_file, args.single_cell_type_file)
sys.exit(1)
elif len(set(G) - set(range(K))) > 0:
logging.error("ERROR: Cell types in `%s` can only take values in {0, ..., K-1}.",
args.single_cell_type_file)
sys.exit(1)
if BKexpr is not None:
logging.info("%d bulk samples on %d genes are loaded.",
BKexpr.shape[0], BKexpr.shape[1])
if SCexpr is not None:
logging.info("%d single cells on %d genes are loaded.\n",
SCexpr.shape[0], SCexpr.shape[1])
if iMarkers is not None and np.max(iMarkers[:, 1]) > K:
logging.error("ERROR: cell types in `%s` can only take values in {0, ..., K-1}.",
args.iMarkers_file)
sys.exit(1)
## perform GEM
logging.info("Gibbs-EM started ...")
start = time.time()
myGEM = LogitNormalGEM(
BKexpr=BKexpr, SCexpr=SCexpr, G=G, K=args.number_of_cell_types,
iMarkers=iMarkers,
init_A=init_A, min_A=args.mininimal_A,
init_alpha=init_alpha, est_alpha=args.est_alpha,
init_pkappa=args.initial_kappa_mean_var,
init_ptau=args.initial_tau_mean_var,
burnin=args.burn_in_length, sample=args.gibbs_sample_number,
thin=args.gibbs_thinning,
bk_mean_approx = args.bk_mean_approx,
MLE_CONV=args.Mstep_convergence_tol, MLE_maxiter=args.Mstep_maxiter,
EM_CONV=args.EM_convergence_tol, EM_maxiter=args.EM_maxiter)
(niter, elbo, converged, path_elbo) = myGEM.gem()
logging.info("Gibbs-EM finished in %.2f seconds.\n", time.time() - start)
# save results
if not os.path.exists(args.output_directory):
os.makedirs(args.output_directory)
gem2csv(args.output_directory, myGEM, prefix=args.output_prefix)
logging.info("Results are under directory %s." % args.output_directory)
logging.info("Logging info is written to %s." , args.logging_file)
logging.info("#" * 80 + "\n")