-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
41 lines (31 loc) · 1018 Bytes
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
## Helper functions
##
## Copyright Lingxue Zhu ([email protected]).
## All Rights Reserved.
import numpy as np
def simplex_proj(y, min_y):
"""
project a vector y onto the simplex, such that
y >= min_y and sum(y) = 1
Reference: Wang (2013), "Projection onto the probability simplex:
An efficient algorithm with a simple proof, and an application"
-- y: an N x 1 vector to be projected
"""
p = len(y)
sorted_y = sorted(y, reverse=True)
cumsum = 0 ## cumulative sum
(iBest, rouBest) = (-1, -1) ## the largest i such that rou>min_y
for i in xrange(p):
cumsum += sorted_y[i]
rou = sorted_y[i] + (1 - (p-i-1)*min_y - cumsum) / float(i+1)
if rou > min_y:
iBest = i
rouBest = rou
lamb = rouBest - sorted_y[iBest]
proj_y = np.maximum(np.array(y)+lamb, min_y)
return proj_y
def std_row(B):
"""
Standardize matrix to have row sum to 1
"""
return np.true_divide(B, B.sum(axis=1)[:, np.newaxis])