-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconftest.py
248 lines (222 loc) · 7.76 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""Pytest fixture and helper functions to create a SpatialData object during test time."""
from typing import Union
import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
from anndata import AnnData
from geopandas import GeoDataFrame
from multiscale_spatial_image import MultiscaleSpatialImage
from numpy.random import default_rng
from shapely.geometry import MultiPolygon, Point, Polygon
from spatial_image import SpatialImage
from spatialdata import SpatialData
from spatialdata.models import (
Image2DModel,
Image3DModel,
Labels2DModel,
Labels3DModel,
PointsModel,
ShapesModel,
TableModel,
)
from xarray import DataArray
# Added from https://github.com/scverse/spatialdata-plot
RNG = default_rng()
@pytest.fixture()
def full_sdata() -> SpatialData:
"""Create SpatialData object."""
return SpatialData(
images=_get_images(),
labels=_get_labels(),
shapes=_get_shapes(),
points=_get_points(),
table=_get_table(region="sample1"),
)
def _get_images() -> dict[str, Union[SpatialImage, MultiscaleSpatialImage]]:
out = {}
dims_2d = ("c", "y", "x")
dims_3d = ("z", "y", "x", "c")
out["image2d"] = Image2DModel.parse(
RNG.normal(size=(3, 64, 64)), dims=dims_2d, c_coords=["r", "g", "b"]
)
out["image2d_multiscale"] = Image2DModel.parse(
RNG.normal(size=(3, 64, 64)), scale_factors=[2, 2], dims=dims_2d, c_coords=["r", "g", "b"]
)
out["image2d_xarray"] = Image2DModel.parse(
DataArray(RNG.normal(size=(3, 64, 64)), dims=dims_2d), dims=None
)
out["image2d_multiscale_xarray"] = Image2DModel.parse(
DataArray(RNG.normal(size=(3, 64, 64)), dims=dims_2d),
scale_factors=[2, 4],
dims=None,
)
out["image3d_numpy"] = Image3DModel.parse(RNG.normal(size=(2, 64, 64, 3)), dims=dims_3d)
out["image3d_multiscale_numpy"] = Image3DModel.parse(
RNG.normal(size=(2, 64, 64, 3)), scale_factors=[2], dims=dims_3d
)
out["image3d_xarray"] = Image3DModel.parse(
DataArray(RNG.normal(size=(2, 64, 64, 3)), dims=dims_3d), dims=None
)
out["image3d_multiscale_xarray"] = Image3DModel.parse(
DataArray(RNG.normal(size=(2, 64, 64, 3)), dims=dims_3d),
scale_factors=[2],
dims=None,
)
return out
def _get_labels() -> dict[str, Union[SpatialImage, MultiscaleSpatialImage]]:
out = {}
dims_2d = ("y", "x")
dims_3d = ("z", "y", "x")
out["labels2d"] = Labels2DModel.parse(RNG.integers(0, 100, size=(64, 64)), dims=dims_2d)
out["labels2d_multiscale"] = Labels2DModel.parse(
RNG.integers(0, 100, size=(64, 64)), scale_factors=[2, 4], dims=dims_2d
)
out["labels2d_xarray"] = Labels2DModel.parse(
DataArray(RNG.integers(0, 100, size=(64, 64)), dims=dims_2d), dims=None
)
out["labels2d_multiscale_xarray"] = Labels2DModel.parse(
DataArray(RNG.integers(0, 100, size=(64, 64)), dims=dims_2d),
scale_factors=[2, 4],
dims=None,
)
out["labels3d_numpy"] = Labels3DModel.parse(
RNG.integers(0, 100, size=(10, 64, 64)), dims=dims_3d
)
out["labels3d_multiscale_numpy"] = Labels3DModel.parse(
RNG.integers(0, 100, size=(10, 64, 64)), scale_factors=[2, 4], dims=dims_3d
)
out["labels3d_xarray"] = Labels3DModel.parse(
DataArray(RNG.integers(0, 100, size=(10, 64, 64)), dims=dims_3d), dims=None
)
out["labels3d_multiscale_xarray"] = Labels3DModel.parse(
DataArray(RNG.integers(0, 100, size=(10, 64, 64)), dims=dims_3d),
scale_factors=[2, 4],
dims=None,
)
return out
def _get_polygons() -> dict[str, GeoDataFrame]:
out = {}
poly = GeoDataFrame(
{
"geometry": [
Polygon(((0, 0), (0, 1), (1, 1), (1, 0))),
Polygon(((0, 0), (0, -1), (-1, -1), (-1, 0))),
Polygon(((0, 0), (0, 1), (1, 10))),
Polygon(((0, 0), (0, 1), (1, 1))),
Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (1, 0))),
]
}
)
multipoly = GeoDataFrame(
{
"geometry": [
MultiPolygon(
[
Polygon(((0, 0), (0, 1), (1, 1), (1, 0))),
Polygon(((0, 0), (0, -1), (-1, -1), (-1, 0))),
]
),
MultiPolygon(
[
Polygon(((0, 0), (0, 1), (1, 10))),
Polygon(((0, 0), (0, 1), (1, 1))),
Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (1, 0))),
]
),
]
}
)
out["poly"] = ShapesModel.parse(poly, name="poly")
out["multipoly"] = ShapesModel.parse(multipoly, name="multipoly")
return out
def _get_shapes() -> dict[str, AnnData]:
out = {}
poly = GeoDataFrame(
{
"geometry": [
Polygon(((0, 0), (0, 1), (1, 1), (1, 0))),
Polygon(((0, 0), (0, -1), (-1, -1), (-1, 0))),
Polygon(((0, 0), (0, 1), (1, 10))),
Polygon(((10, 10), (10, 20), (20, 20))),
Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (1, 0))),
]
}
)
multipoly = GeoDataFrame(
{
"geometry": [
MultiPolygon(
[
Polygon(((0, 0), (0, 1), (1, 1), (1, 0))),
Polygon(((0, 0), (0, -1), (-1, -1), (-1, 0))),
]
),
MultiPolygon(
[
Polygon(((0, 0), (0, 1), (1, 10))),
Polygon(((0, 0), (1, 0), (1, 1))),
]
),
]
}
)
points = GeoDataFrame(
{
"geometry": [
Point((0, 1)),
Point((1, 1)),
Point((3, 4)),
Point((4, 2)),
Point((5, 6)),
]
}
)
rng = np.random.default_rng(seed=0)
points["radius"] = np.abs(rng.normal(size=(len(points), 1)))
out["poly"] = ShapesModel.parse(poly)
out["poly"].index = [0, 1, 2, 3, 4]
out["multipoly"] = ShapesModel.parse(multipoly)
out["circles"] = ShapesModel.parse(points)
return out
def _get_points() -> dict[str, pa.Table]:
name = "points"
out = {}
for i in range(2):
name = f"{name}_{i}"
arr = RNG.normal(size=(300, 2))
# randomly assign some values from v to the points
points_assignment0 = RNG.integers(0, 10, size=arr.shape[0]).astype(np.int_)
if i == 0:
genes = RNG.choice(["a", "b"], size=arr.shape[0])
else:
genes = np.tile(np.array(list(map(str, range(280)))), 2)[:300]
annotation = pd.DataFrame(
{
"genes": genes,
"instance_id": points_assignment0,
},
)
out[name] = PointsModel.parse(
arr, annotation=annotation, feature_key="genes", instance_key="instance_id"
)
return out
def _get_table(
region: None | str | list[str] = "sample1",
region_key: None | str = "region",
instance_key: None | str = "instance_id",
) -> AnnData:
adata = AnnData(
RNG.normal(size=(100, 10)),
obs=pd.DataFrame(RNG.normal(size=(100, 3)), columns=["a", "b", "c"]),
)
if not all(var for var in (region, region_key, instance_key)):
return TableModel.parse(adata=adata)
adata.obs[instance_key] = np.arange(adata.n_obs)
if isinstance(region, str):
adata.obs[region_key] = region
elif isinstance(region, list):
adata.obs[region_key] = RNG.choice(region, size=adata.n_obs)
return TableModel.parse(
adata=adata, region=region, region_key=region_key, instance_key=instance_key
)