forked from data-apis/array-api-compat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_aliases.py
110 lines (88 loc) · 3.15 KB
/
_aliases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from __future__ import annotations
from functools import partial
from typing import TYPE_CHECKING
import numpy as np
from ..._internal import get_xp
from ...common import _aliases, _linalg
from ...common._helpers import _check_device
if TYPE_CHECKING:
from typing import Optional, Tuple, Union
from ...common._typing import Device, Dtype, ndarray
import dask.array as da
isdtype = get_xp(np)(_aliases.isdtype)
astype = _aliases.astype
# Common aliases
# This arange func is modified from the common one to
# not pass stop/step as keyword arguments, which will cause
# an error with dask
# TODO: delete the xp stuff, it shouldn't be necessary
def dask_arange(
start: Union[int, float],
/,
stop: Optional[Union[int, float]] = None,
step: Union[int, float] = 1,
*,
xp,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> ndarray:
_check_device(xp, device)
args = [start]
if stop is not None:
args.append(stop)
else:
# stop is None, so start is actually stop
# prepend the default value for start which is 0
args.insert(0, 0)
args.append(step)
return xp.arange(*args, dtype=dtype, **kwargs)
arange = get_xp(da)(dask_arange)
eye = get_xp(da)(_aliases.eye)
asarray = partial(_aliases._asarray, namespace="dask.array")
asarray.__doc__ = _aliases._asarray.__doc__
linspace = get_xp(da)(_aliases.linspace)
eye = get_xp(da)(_aliases.eye)
UniqueAllResult = get_xp(da)(_aliases.UniqueAllResult)
UniqueCountsResult = get_xp(da)(_aliases.UniqueCountsResult)
UniqueInverseResult = get_xp(da)(_aliases.UniqueInverseResult)
unique_all = get_xp(da)(_aliases.unique_all)
unique_counts = get_xp(da)(_aliases.unique_counts)
unique_inverse = get_xp(da)(_aliases.unique_inverse)
unique_values = get_xp(da)(_aliases.unique_values)
permute_dims = get_xp(da)(_aliases.permute_dims)
std = get_xp(da)(_aliases.std)
var = get_xp(da)(_aliases.var)
empty = get_xp(da)(_aliases.empty)
empty_like = get_xp(da)(_aliases.empty_like)
full = get_xp(da)(_aliases.full)
full_like = get_xp(da)(_aliases.full_like)
ones = get_xp(da)(_aliases.ones)
ones_like = get_xp(da)(_aliases.ones_like)
zeros = get_xp(da)(_aliases.zeros)
zeros_like = get_xp(da)(_aliases.zeros_like)
reshape = get_xp(da)(_aliases.reshape)
matrix_transpose = get_xp(da)(_aliases.matrix_transpose)
vecdot = get_xp(da)(_aliases.vecdot)
nonzero = get_xp(da)(_aliases.nonzero)
sum = get_xp(np)(_aliases.sum)
prod = get_xp(np)(_aliases.prod)
ceil = get_xp(np)(_aliases.ceil)
floor = get_xp(np)(_aliases.floor)
trunc = get_xp(np)(_aliases.trunc)
matmul = get_xp(np)(_aliases.matmul)
tensordot = get_xp(np)(_aliases.tensordot)
EighResult = _linalg.EighResult
QRResult = _linalg.QRResult
SlogdetResult = _linalg.SlogdetResult
SVDResult = _linalg.SVDResult
qr = get_xp(da)(_linalg.qr)
cholesky = get_xp(da)(_linalg.cholesky)
matrix_rank = get_xp(da)(_linalg.matrix_rank)
matrix_norm = get_xp(da)(_linalg.matrix_norm)
def svdvals(x: ndarray) -> Union[ndarray, Tuple[ndarray, ...]]:
# TODO: can't avoid computing U or V for dask
_, s, _ = da.linalg.svd(x)
return s
vector_norm = get_xp(da)(_linalg.vector_norm)
diagonal = get_xp(da)(_linalg.diagonal)