-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMain_1_EverytimeChange.m
694 lines (669 loc) · 43.2 KB
/
Main_1_EverytimeChange.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
clear;
clc;
load('EN_ALLDATA_train_1.5_10.mat');
%%
MAX_STATES_NUM = 3^6 * 2;
ACTION_NUM = 6;
%Q_0 = zeros(MAX_STATES_NUM, ACTION_NUM);
gamma = 0.9; % discount factor,越大、小?表示越重视之前的经验
alpha = 0.2; % learning rate,越小表示保留之前训练的效果越少
epsilon = 0.1; % eps-greedy
%% setting
nL=2; %双车道
cellL=7.5; %一个元胞长度
cL=ceil(7.5/cellL); %cell number of a car
% nt=0.5; %仿真步长时间
numOfCell=1334; %车道元胞数量
roadL=800*cellL; %车道长度
maxTime=10000; %仿真时间!!!
maxSpeed=floor(108/3.6/cellL); %最大速度=4
nominalSpeed = 2;
% dMax=26.25/cellL; %紧急减速度3.5
% dC=18.75/cellL; %常规减速度2.5
% aMax=22.5/cellL; %最大加速度3
% Tav=0.1; %自动驾驶反应时间
% Trv=1.5;%手动驾驶反应时间
probOfSlowdown=0.25; %随机慢化概率
% probOfBlock=0.1;
% A1=0.1; %自动驾驶车辆所占比例
p=0; %车辆的换道水平
probChange=0.5; %车辆的换道概率
%%
episode_limit=4;
fprintf('episode_limit=4');
%% run
for epi=1:1:episode_limit
%%
ALL_LINK_1=[];%车道1
ALL_LINK_2=[];%车道2
ALL_AV_LINK_1=[];%车道1上所有的AV
ALL_AV_LINK_2=[];%车道2上所有的AV
LINK_1=NaN(1,numOfCell); %车道1
LINK_2=NaN(1,numOfCell); %车道2
LINK_AV_1=NaN(1,numOfCell); %车道1上的AV
LINK_AV_2=NaN(1,numOfCell); %车道2上的AV
Vehicle_1=NaN(20000,11);
Vehicle_2=NaN(20000,11);
Route_1=NaN(10000,20000); %假设车道1在10000s内,最多出现8000辆车
Route_2=NaN(10000,20000);
ALL_VEHICLE_1=[];%车道1所有车辆
ALL_VEHICLE_2=[];%车道2所有车辆
All_Speed_1=zeros(20000,2);%存储所有车的每次更新的速度
All_Speed_2=zeros(20000,2);%存储所有车的每次更新的速度
Speed_1=NaN(10000,20000); %创建速度矩阵,横轴为时间,纵轴为车辆标号,值为速度
Speed_2=NaN(10000,20000);
index_1=0;
index_2=0;
flag_1=0;
flag_2=0;
%%
for time_i=1:1:maxTime
fprintf('time: %d, episode: %d\n ', time_i,epi);
%% load vehicle
%% load link_1 vehicle
[LINK_1,Vehicle_1,index_1,flag_1] = LoadVehicle(time_i, LINK_1, maxSpeed,1,Vehicle_1,index_1,flag_1);
%% load link_2 vehicle
[LINK_2,Vehicle_2,index_2,flag_2] = LoadVehicle(time_i, LINK_2, maxSpeed,2,Vehicle_2,index_2,flag_2);
%%
ALL_LINK_1=[ALL_LINK_1; LINK_1];%每次增加最后一行
ALL_LINK_2=[ALL_LINK_2; LINK_2];
ALL_AV_LINK_1=[ALL_AV_LINK_1;LINK_AV_1];
ALL_AV_LINK_2=[ALL_AV_LINK_2;LINK_AV_2];
%% lane change
r_0=unifrnd(0,1);
if(r_0>0.5)
for c=1:1:2
if c==1
for i=1:1:index_1
if Vehicle_1(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
% get current speed
speedOld_1= LINK_1(cell_i);
if ~isnan(speedOld_1) && Vehicle_1(i,2)==cell_i %当SpeedOld不是nan时,
% 判断车辆类型
if Vehicle_1(i,5)==2 %如果是RV,则CA模型
emptyFront_1=GetEmptyFront(LINK_1, numOfCell, maxSpeed, cell_i);
emptyFront_2=GetEmptyFront(LINK_2, numOfCell, maxSpeed, cell_i);
[emptyBackD_2,vBack_2]=GetEmptyBack(LINK_2, maxSpeed, cell_i,numOfCell);
if isnan(LINK_2(cell_i)) && emptyFront_1<min(speedOld_1+1,maxSpeed) && emptyFront_1<emptyFront_2 && emptyBackD_2>vBack_2+p %如果满足换道条件
r_1=unifrnd(0,1);
if r_1<=probChange && time_i>0 %&& Vehicle_1(i,4)==0 %如果小于换道率概率且大于0s
LINK_1(cell_i)=nan; %则换道(从1道-2道)
LINK_2(cell_i)=speedOld_1;
Vehicle_1(i,4)=Vehicle_1(i,4)+1;
Vehicle_1(i,3)=speedOld_1;
type_new_1=Vehicle_1(i,5); %将该车的属性赋值给type_new
flag_new_1=Vehicle_1(i,7);
Vehicle_1(i,6)=2; %将Linkname赋值为2
Vehicle_1(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_2=index_2+1;
Vehicle_2(index_2,1:7)=[index_2,cell_i,speedOld_1,Vehicle_1(i,4),type_new_1,2,flag_new_1];
break; %换道成功就break该层循环
end
end
else %如果是AV
[state_1,action_1,r_1,flag_break_1,speedNew_1] = Q_Learning_step1(Q_0,LINK_1,LINK_2,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,1);
% Vehicle_1(i,8:10)=[state_1,action_1,r_1];
% Vehicle_1(i,3)=speedNew_1;
if flag_break_1 == true
% lane change
LINK_1(cell_i)=nan;
LINK_2(cell_i)=speedNew_1;
Vehicle_1(i,4)=Vehicle_1(i,4)+1;
Vehicle_1(i,3)=speedNew_1;
type_new_1=Vehicle_1(i,5); %将该车的属性赋值给type_new
flag_new_1=Vehicle_1(i,7);
Vehicle_1(i,6)=2; %将Linkname赋值为2
Vehicle_1(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_2=index_2+1;
Vehicle_2(index_2,1:10)=[index_2,cell_i,speedNew_1,Vehicle_1(i,4),type_new_1,2,flag_new_1,state_1,action_1,r_1];% 换道标记也给Vehicle_2
All_Speed_2(index_2,2)=speedNew_1;%更新速度
break; %换道成功就break该层循环
end
end
end
end
end
end
else
for i=1:1:index_2
if Vehicle_2(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
% get current speed
speedOld_2= LINK_2(cell_i);
if ~isnan(speedOld_2) && Vehicle_2(i,2)==cell_i %当SpeedOld不是nan时,
% 判断车辆类型
if Vehicle_2(i,5)==2 %如果是RV,则CA模型
emptyFront_2=GetEmptyFront(LINK_2, numOfCell, maxSpeed, cell_i);
emptyFront_1=GetEmptyFront(LINK_1, numOfCell, maxSpeed, cell_i);
[emptyBackD_1,vBack_1]=GetEmptyBack(LINK_1, maxSpeed, cell_i,numOfCell);
if isnan(LINK_1(cell_i)) && emptyFront_2<min(speedOld_2+1,maxSpeed) && emptyFront_2<emptyFront_1 && emptyBackD_1>vBack_1+p %如果满足换道条件
r_2=unifrnd(0,1);
if r_2<=probChange && time_i>0 %&& Vehicle_2(i,4)==0 %如果小于换道率概率且大于0s,且未曾换过道
LINK_2(cell_i)=nan; %则换道(从2道-1道)
LINK_1(cell_i)=speedOld_2;
Vehicle_2(i,4)=Vehicle_2(i,4)+1;
Vehicle_2(i,3)=speedOld_2;
type_new_2=Vehicle_2(i,5); %将该车的属性赋值给type_new
flag_new_2=Vehicle_2(i,7);
Vehicle_2(i,6)=1; %将Linkname赋值为1
Vehicle_2(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_1=index_1+1;
Vehicle_1(index_1,1:7)=[index_1,cell_i,speedOld_2,Vehicle_2(i,4),type_new_2,1,flag_new_2];
break; %换道成功就break该层循环
end
end
else
[state_2,action_2,r_2,flag_break_2,speedNew_2] = Q_Learning_step1(Q_0,LINK_2,LINK_1,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,2);
% Vehicle_2(i,8:10)=[state_2,action_2,r_2];
% Vehicle_2(i,3)=speedNew_2;
if flag_break_2 == true
% lane change
LINK_2(cell_i)=nan; %则换道
LINK_1(cell_i)=speedNew_2;
Vehicle_2(i,4)=Vehicle_2(i,4)+1;
% Vehicle_2(i,4)=changeL;
Vehicle_2(i,3)=speedNew_2;
type_new_2=Vehicle_2(i,5); %将该车的属性赋值给type_new
flag_new_2=Vehicle_2(i,7);
Vehicle_2(i,6)=1; %将Linkname赋值为1
Vehicle_2(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_1=index_1+1;
Vehicle_1(index_1,1:10)=[index_1,cell_i,speedNew_2,Vehicle_2(i,4),type_new_2,1,flag_new_2,state_2,action_2,r_2];
All_Speed_1(index_1,2)=speedNew_2;%更新速度
break;
end
end
end
end
end
end
end
end
else
for c=2:-1:1
if c==1
for i=1:1:index_1
if Vehicle_1(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
% get current speed
speedOld_1= LINK_1(cell_i);
if ~isnan(speedOld_1) && Vehicle_1(i,2)==cell_i %当SpeedOld不是nan时,
% 判断车辆类型
if Vehicle_1(i,5)==2 %如果是RV,则CA模型
emptyFront_1=GetEmptyFront(LINK_1, numOfCell, maxSpeed, cell_i);
emptyFront_2=GetEmptyFront(LINK_2, numOfCell, maxSpeed, cell_i);
[emptyBackD_2,vBack_2]=GetEmptyBack(LINK_2, maxSpeed, cell_i,numOfCell);
if isnan(LINK_2(cell_i)) && emptyFront_1<min(speedOld_1+1,maxSpeed) && emptyFront_1<emptyFront_2 && emptyBackD_2>vBack_2+p %如果满足换道条件
r_1=unifrnd(0,1);
if r_1<=probChange && time_i>0 %&& Vehicle_1(i,4)==0 %如果小于换道率概率且大于500s,且未曾换过道
LINK_1(cell_i)=nan; %则换道(从1道-2道)
LINK_2(cell_i)=speedOld_1;
Vehicle_1(i,4)=Vehicle_1(i,4)+1;
Vehicle_1(i,3)=speedOld_1;
type_new_1=Vehicle_1(i,5); %将该车的属性赋值给type_new
flag_new_1=Vehicle_1(i,7);
Vehicle_1(i,6)=2; %将Linkname赋值为2
Vehicle_1(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_2=index_2+1;
Vehicle_2(index_2,1:7)=[index_2,cell_i,speedOld_1,Vehicle_1(i,4),type_new_1,2,flag_new_1];
break; %换道成功就break该层循环
end
end
else
[state_1,action_1,r_1,flag_break_1,speedNew_1] = Q_Learning_step1(Q_0,LINK_1,LINK_2,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,1);
% Vehicle_1(i,8:10)=[state_1,action_1,r_1];
% Vehicle_1(i,3)=speedNew_1;
if flag_break_1 == true
% lane change
LINK_1(cell_i)=nan;
LINK_2(cell_i)=speedNew_1;
Vehicle_1(i,4)=Vehicle_1(i,4)+1;
Vehicle_1(i,3)=speedNew_1;
type_new_1=Vehicle_1(i,5); %将该车的属性赋值给type_new
flag_new_1=Vehicle_1(i,7);
Vehicle_1(i,6)=2; %将Linkname赋值为2
Vehicle_1(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_2=index_2+1;
Vehicle_2(index_2,1:10)=[index_2,cell_i,speedNew_1,Vehicle_1(i,4),type_new_1,2,flag_new_1,state_1,action_1,r_1];% 换道标记也给Vehicle_2
All_Speed_2(index_2,2)=speedNew_1;%更新速度
break; %换道成功就break该层循环
end
end
end
end
end
end
else
for i=1:1:index_2
if Vehicle_2(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
% get current speed
speedOld_2= LINK_2(cell_i);
if ~isnan(speedOld_2) && Vehicle_2(i,2)==cell_i %当SpeedOld不是nan时,
% 判断车辆类型
if Vehicle_2(i,5)==2 %如果是RV,则CA模型
emptyFront_2=GetEmptyFront(LINK_2, numOfCell, maxSpeed, cell_i);
emptyFront_1=GetEmptyFront(LINK_1, numOfCell, maxSpeed, cell_i);
[emptyBackD_1,vBack_1]=GetEmptyBack(LINK_1, maxSpeed, cell_i,numOfCell);
if isnan(LINK_1(cell_i)) && emptyFront_2<min(speedOld_2+1,maxSpeed) && emptyFront_2<emptyFront_1 && emptyBackD_1>vBack_1+p %如果满足换道条件
r_2=unifrnd(0,1);
if r_2<=probChange && time_i>0 %&& Vehicle_2(i,4)==0 %如果小于换道率概率且大于500s,且未曾换过道
LINK_2(cell_i)=nan; %则换道(从2道-1道)
LINK_1(cell_i)=speedOld_2;
Vehicle_2(i,4)=Vehicle_2(i,4)+1;
Vehicle_2(i,3)=speedOld_2;
type_new_2=Vehicle_2(i,5); %将该车的属性赋值给type_new
flag_new_2=Vehicle_2(i,7);
Vehicle_2(i,6)=1; %将Linkname赋值为1
Vehicle_2(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_1=index_1+1;
Vehicle_1(index_1,1:7)=[index_1,cell_i,speedOld_2,Vehicle_2(i,4),type_new_2,1,flag_new_2];
break; %换道成功就break该层循环
end
end
else
[state_2,action_2,r_2,flag_break_2,speedNew_2] = Q_Learning_step1(Q_0,LINK_2,LINK_1,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,2);
% Vehicle_2(i,8:10)=[state_2,action_2,r_2];
% Vehicle_2(i,3)=speedNew_2;
if flag_break_2 == true
% lane change
LINK_2(cell_i)=nan; %则换道
LINK_1(cell_i)=speedNew_2;
Vehicle_2(i,4)=Vehicle_2(i,4)+1;
% Vehicle_2(i,4)=changeL;
Vehicle_2(i,3)=speedNew_2;
type_new_2=Vehicle_2(i,5); %将该车的属性赋值给type_new
flag_new_2=Vehicle_2(i,7);
Vehicle_2(i,6)=1; %将Linkname赋值为1
Vehicle_2(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_1=index_1+1;
Vehicle_1(index_1,1:10)=[index_1,cell_i,speedNew_2,Vehicle_2(i,4),type_new_2,1,flag_new_2,state_2,action_2,r_2];
All_Speed_1(index_1,2)=speedNew_2;%更新速度
break;
end
end
end
end
end
end
end
end
end
%% update speed
%车道1和2的速度更新
r_i=unifrnd(0,1);
if(r_i>0.5)
for c=1:1:2
if c==1
for i=1:1:index_1
if Vehicle_1(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
% get current speed
speedOld_1= LINK_1(cell_i);
if ~isnan(speedOld_1) && Vehicle_1(i,2)==cell_i %当SpeedOld不是nan时,
% 判断车辆类型
if Vehicle_1(i,5)==2 %如果是RV,则CA模型
% step1: acceleration
speedNew_1=speedOld_1+1;
speedNew_1= min(speedNew_1,maxSpeed);
% step2: safety distance
emptyFront_1=GetEmptyFront(LINK_1, numOfCell, maxSpeed, cell_i); %本车道前距
speedNew_1= min(speedNew_1,emptyFront_1);
% step3: randomization
r=unifrnd(0,1);
if r<=probOfSlowdown
speedNew_1=speedNew_1-1;
end
speedNew_1= max(0,speedNew_1);%保证不倒车
% save new speed
LINK_1(cell_i)=speedNew_1; %将该车的最终速度存储进Link
Vehicle_1(i,3)=speedNew_1;
Vehicle_1(i,2)=cell_i;
All_Speed_1(i,2)=speedNew_1;%更新速度
break;
else %如果是AV
[state_1,action_1,r_1,flag_break_1,speedNew_1] = Q_Learning_step1(Q_0,LINK_1,LINK_2,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,1);
if flag_break_1 == true
% lane change
LINK_1(cell_i)=nan;
LINK_2(cell_i)=speedNew_1;
Vehicle_1(i,4)=Vehicle_1(i,4)+1; %换道次数+1
Vehicle_1(i,3)=speedNew_1;
type_new_1=Vehicle_1(i,5); %将该车的属性赋值给type_new
flag_new_1=Vehicle_1(i,7);
Vehicle_1(i,6)=2; %将Linkname赋值为2
Vehicle_1(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_2=index_2+1;
Vehicle_2(index_2,1:10)=[index_2,cell_i,speedNew_1,Vehicle_1(i,4),type_new_1,2,flag_new_1,state_1,action_1,r_1];% 换道标记也给Vehicle_2
All_Speed_2(index_2,2)=speedNew_1;%更新速度
break;
else
% save new speed
LINK_1(cell_i)=speedNew_1; %将该车的最终速度存储进Link
Vehicle_1(i,3)=speedNew_1;
Vehicle_1(i,2)=cell_i;
All_Speed_1(i,2)=speedNew_1;%更新速度
Vehicle_1(i,8:10)=[state_1,action_1,r_1];
break;
end
% save new speed
% [s_1,a_1,r_1,flag_break,speedNew] = Q_Learning_step1(Q_0,LINK_1,LINK_2,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,1);
%Vehicle_i(i,8:10)=[s,a,r];
%LINK_1(cell_i)=Vehicle_1(i,3); % 将该车的最终速度存储进Link
% Vehicle_1(i,2)=cell_i;
% All_Speed_1(i,2)=Vehicle_1(i,3);%更新速度
end
end
end
end
end
else
for i=1:1:index_2
if Vehicle_2(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
% get current speed
speedOld_2= LINK_2(cell_i);
if ~isnan(speedOld_2) && Vehicle_2(i,2)==cell_i %当SpeedOld不是nan时,
% 判断车辆类型
if Vehicle_2(i,5)==2 %如果是RV,则CA模型
% step1: acceleration
speedNew_2=speedOld_2+1;
speedNew_2= min(speedNew_2,maxSpeed);
% step2: safety distance
emptyFront_2=GetEmptyFront(LINK_2, numOfCell, maxSpeed, cell_i); %本车道前距
speedNew_2= min(speedNew_2,emptyFront_2);
% step3: randomization
r=unifrnd(0,1);
if r<=probOfSlowdown
speedNew_2=speedNew_2-1;
end
speedNew_2= max(0,speedNew_2);%保证不倒车
% save new speed
LINK_2(cell_i)=speedNew_2; %将该车的最终速度存储进Link
Vehicle_2(i,3)=speedNew_2;
Vehicle_2(i,2)=cell_i;
All_Speed_2(i,2)=speedNew_2;%更新速度
break;
else %如果是AV
[state_2,action_2,r_2,flag_break_2,speedNew_2] = Q_Learning_step1(Q_0,LINK_2,LINK_1,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,2);
if flag_break_2 == true
% lane change
LINK_2(cell_i)=nan; %则换道
LINK_1(cell_i)=speedNew_2;
Vehicle_2(i,4)=Vehicle_2(i,4)+1; %换道次数+1
Vehicle_2(i,3)=speedNew_2;
type_new_2=Vehicle_2(i,5); %将该车的属性赋值给type_new
flag_new_2=Vehicle_2(i,7);
Vehicle_2(i,6)=1; %将Linkname赋值为1
Vehicle_2(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_1=index_1+1;
Vehicle_1(index_1,1:10)=[index_1,cell_i,speedNew_2,Vehicle_2(i,4),type_new_2,1,flag_new_2,state_2,action_2,r_2];
All_Speed_1(index_1,2)=speedNew_2;%更新速度
break;
else % 不换道
% save new speed
LINK_2(cell_i)=speedNew_2; %将该车的最终速度存储进Link
Vehicle_2(i,3)=speedNew_2;
Vehicle_2(i,2)=cell_i;
All_Speed_2(i,2)=speedNew_2;%更新速度
Vehicle_2(i,8:10)=[state_2,action_2,r_2];
break;
end
% save new speed
%[s,a,r,flag_break,speedNew] = Q_Learning_step1(Q_0,LINK_i,LINK_n,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,c);
%Vehicle_i(i,8:10)=[s,a,r];
% LINK_2(cell_i)=Vehicle_2(i,3); % 将该车的最终速度存储进Link
% Vehicle_2(i,2)=cell_i;
% All_Speed_2(i,2)=Vehicle_2(i,3);%更新速度
% break;
end
end
end
end
end
end
end
else
for c=2:-1:1
if c==1
for i=1:1:index_1
if Vehicle_1(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
% get current speed
speedOld_1= LINK_1(cell_i);
if ~isnan(speedOld_1) && Vehicle_1(i,2)==cell_i %当SpeedOld不是nan时,
% 判断车辆类型
if Vehicle_1(i,5)==2 %如果是RV,则CA模型
% step1: acceleration
speedNew_1=speedOld_1+1;
speedNew_1= min(speedNew_1,maxSpeed);
% step2: safety distance
emptyFront_1=GetEmptyFront(LINK_1, numOfCell, maxSpeed, cell_i); %本车道前距
speedNew_1= min(speedNew_1,emptyFront_1);
% step3: randomization
r=unifrnd(0,1);
if r<=probOfSlowdown
speedNew_1=speedNew_1-1;
end
speedNew_1= max(0,speedNew_1);%保证不倒车
% save new speed
LINK_1(cell_i)=speedNew_1; %将该车的最终速度存储进Link
Vehicle_1(i,3)=speedNew_1;
Vehicle_1(i,2)=cell_i;
All_Speed_1(i,2)=speedNew_1;%更新速度
break;
else %如果是AV
[state_1,action_1,r_1,flag_break_1,speedNew_1] = Q_Learning_step1(Q_0,LINK_1,LINK_2,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,1);
if flag_break_1 == true
% lane change
LINK_1(cell_i)=nan;
LINK_2(cell_i)=speedNew_1;
Vehicle_1(i,4)=Vehicle_1(i,4)+1; %换道次数+1
Vehicle_1(i,3)=speedNew_1;
type_new_1=Vehicle_1(i,5); %将该车的属性赋值给type_new
flag_new_1=Vehicle_1(i,7);
Vehicle_1(i,6)=2; %将Linkname赋值为2
Vehicle_1(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_2=index_2+1;
Vehicle_2(index_2,1:10)=[index_2,cell_i,speedNew_1,Vehicle_1(i,4),type_new_1,2,flag_new_1,state_1,action_1,r_1];% 换道标记也给Vehicle_2
All_Speed_2(index_2,2)=speedNew_1;%更新速度
break;
else
% save new speed
LINK_1(cell_i)=speedNew_1; %将该车的最终速度存储进Link
Vehicle_1(i,3)=speedNew_1;
Vehicle_1(i,2)=cell_i;
All_Speed_1(i,2)=speedNew_1;%更新速度
Vehicle_1(i,8:10)=[state_1,action_1,r_1];
break;
end
% save new speed
% [s_1,a_1,r_1,flag_break,speedNew] = Q_Learning_step1(Q_0,LINK_1,LINK_2,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,1);
%Vehicle_i(i,8:10)=[s,a,r];
%LINK_1(cell_i)=Vehicle_1(i,3); % 将该车的最终速度存储进Link
% Vehicle_1(i,2)=cell_i;
% All_Speed_1(i,2)=Vehicle_1(i,3);%更新速度
end
end
end
end
end
else
for i=1:1:index_2
if Vehicle_2(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
% get current speed
speedOld_2= LINK_2(cell_i);
if ~isnan(speedOld_2) && Vehicle_2(i,2)==cell_i %当SpeedOld不是nan时,
% 判断车辆类型
if Vehicle_2(i,5)==2 %如果是RV,则CA模型
% step1: acceleration
speedNew_2=speedOld_2+1;
speedNew_2= min(speedNew_2,maxSpeed);
% step2: safety distance
emptyFront_2=GetEmptyFront(LINK_2, numOfCell, maxSpeed, cell_i); %本车道前距
speedNew_2= min(speedNew_2,emptyFront_2);
% step3: randomization
r=unifrnd(0,1);
if r<=probOfSlowdown
speedNew_2=speedNew_2-1;
end
speedNew_2= max(0,speedNew_2);%保证不倒车
% save new speed
LINK_2(cell_i)=speedNew_2; %将该车的最终速度存储进Link
Vehicle_2(i,3)=speedNew_2;
Vehicle_2(i,2)=cell_i;
All_Speed_2(i,2)=speedNew_2;%更新速度
break;
else %如果是AV
[state_2,action_2,r_2,flag_break_2,speedNew_2] = Q_Learning_step1(Q_0,LINK_2,LINK_1,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,2);
if flag_break_2 == true
% lane change
LINK_2(cell_i)=nan; %则换道
LINK_1(cell_i)=speedNew_2;
Vehicle_2(i,4)=Vehicle_2(i,4)+1; %换道次数+1
Vehicle_2(i,3)=speedNew_2;
type_new_2=Vehicle_2(i,5); %将该车的属性赋值给type_new
flag_new_2=Vehicle_2(i,7);
Vehicle_2(i,6)=1; %将Linkname赋值为1
Vehicle_2(i,1)=0;%将id赋值为0表示下次在该车道不考虑该车
index_1=index_1+1;
Vehicle_1(index_1,1:10)=[index_1,cell_i,speedNew_2,Vehicle_2(i,4),type_new_2,1,flag_new_2,state_2,action_2,r_2];
All_Speed_1(index_1,2)=speedNew_2;%更新速度
break;
else % 不换道
% save new speed
LINK_2(cell_i)=speedNew_2; %将该车的最终速度存储进Link
Vehicle_2(i,3)=speedNew_2;
Vehicle_2(i,2)=cell_i;
All_Speed_2(i,2)=speedNew_2;%更新速度
Vehicle_2(i,8:10)=[state_2,action_2,r_2];
break;
end
% save new speed
%[s,a,r,flag_break,speedNew] = Q_Learning_step1(Q_0,LINK_i,LINK_n,cell_i,numOfCell,maxSpeed,p,epsilon,nominalSpeed,c);
%Vehicle_i(i,8:10)=[s,a,r];
% LINK_2(cell_i)=Vehicle_2(i,3); % 将该车的最终速度存储进Link
% Vehicle_2(i,2)=cell_i;
% All_Speed_2(i,2)=Vehicle_2(i,3);%更新速度
% break;
end
end
end
end
end
end
end
end
%% driving
NEWLINK_1=NaN(1,numOfCell); %新建一个Newlink_1
NEWLINK_2=NaN(1,numOfCell); %新建一个Newlink_2
NEWLINK_AV_1=NaN(1,numOfCell); %新建一个Newlink_AV_1
NEWLINK_AV_2=NaN(1,numOfCell); %新建一个Newlink_AV_2
for i=1:1:index_1
if Vehicle_1(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
if Vehicle_1(i,2)==cell_i
newSpeed_1= LINK_1(cell_i);
if ~isnan(newSpeed_1)
newCell_1=cell_i+newSpeed_1;
if newCell_1<=numOfCell % in link
NEWLINK_1(cell_i+newSpeed_1)=newSpeed_1;
Route_1(time_i,i)=newCell_1;
Speed_1(time_i,i)=newSpeed_1;
j=[2;11];
Vehicle_1(i,j) = [newCell_1,time_i+1];
if Vehicle_1(i,5)==1 %如果是AV,则更新Q表
Q_0 = Q_Learning_step2(Vehicle_1(i,8),Vehicle_1(i,9),Vehicle_1(i,10),Q_0,LINK_1,LINK_2,newCell_1,numOfCell,maxSpeed,p,alpha,gamma,1);
NEWLINK_AV_1(newCell_1)=newSpeed_1;
end
break;
else % out of link, start from the beginning
newCell_1 = cell_i + newSpeed_1 - numOfCell;
NEWLINK_1(newCell_1) = newSpeed_1;
Route_1(time_i,i) = newCell_1;
Speed_1(time_i,i) = newSpeed_1;
j=[2;11];
Vehicle_1(i,j) = [newCell_1,time_i+1];
% Vehicle_1(i,11)=time_i+1;
if Vehicle_1(i,5)==1 %如果是AV,则更新Q表
Q_0 = Q_Learning_step2(Vehicle_1(i,8),Vehicle_1(i,9),Vehicle_1(i,10),Q_0,LINK_1,LINK_2,newCell_1,numOfCell,maxSpeed,p,alpha,gamma,1);
NEWLINK_AV_1(newCell_1)=newSpeed_1;
end
break;
end
end
end
end
%Vehicle_1(i,2)=Vehicle_1(i,2)+All_Speed_1(i,2);
end
end
LINK_1=NEWLINK_1;%将newlink赋给link
LINK_AV_1=NEWLINK_AV_1;
for i=1:1:index_2
if Vehicle_2(i,1)==0
continue;
else
for cell_i=1:1:numOfCell
if Vehicle_2(i,2)==cell_i
newSpeed_2= LINK_2(cell_i);
if ~isnan(newSpeed_2)
newCell_2=cell_i+newSpeed_2;
if newCell_2<=numOfCell % in link
NEWLINK_2(cell_i+newSpeed_2)=newSpeed_2;
Route_2(time_i,i)=newCell_2;
Speed_2(time_i,i)=newSpeed_2;
j=[2;11];
Vehicle_2(i,j) = [newCell_2,time_i+1];
if Vehicle_2(i,5)==1 %如果是AV,则更新Q表
NEWLINK_AV_2(newCell_2)=newSpeed_2;
Q_0 = Q_Learning_step2(Vehicle_2(i,8),Vehicle_2(i,9),Vehicle_2(i,10),Q_0,LINK_2,LINK_1,newCell_2,numOfCell,maxSpeed,p,alpha,gamma,2);
end
break;
else
newCell_2 = cell_i + newSpeed_2 - numOfCell;
NEWLINK_2(newCell_2) = newSpeed_2;
Route_2(time_i,i) = newCell_2;
Speed_2(time_i,i) = newSpeed_2;
j=[2;11];
Vehicle_2(i,j) = [newCell_2,time_i+1];
if Vehicle_2(i,5)==1 %如果是AV,则更新Q表
NEWLINK_AV_2(newCell_2)=newSpeed_2;
Q_0 = Q_Learning_step2(Vehicle_2(i,8),Vehicle_2(i,9),Vehicle_2(i,10),Q_0,LINK_2,LINK_1,newCell_2,numOfCell,maxSpeed,p,alpha,gamma,2);
end
break;
end
end
end
end
%Vehicle_2(i,2)=Vehicle_2(i,2)+All_Speed_2(i,2);
end
end
LINK_2=NEWLINK_2;%将newlink赋给link
LINK_AV_2=NEWLINK_AV_2;
end
%%
%save('60to80,EN_ALLDATA_8_6.1.mat');
%save('EN_ALLDATA_train_6_1.mat');
%save('test_AV_2veh.mat');
end
save('EN_ALLDATA_train_1.5_10_2.mat');