|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "metadata": { |
| 7 | + "collapsed": false |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import tensorflow as tf\n", |
| 12 | + "import tempfile\n", |
| 13 | + "import pandas as pd" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 3, |
| 19 | + "metadata": { |
| 20 | + "collapsed": false |
| 21 | + }, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "import urllib.request" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 5, |
| 30 | + "metadata": { |
| 31 | + "collapsed": false |
| 32 | + }, |
| 33 | + "outputs": [ |
| 34 | + { |
| 35 | + "data": { |
| 36 | + "text/plain": [ |
| 37 | + "('/var/folders/vk/hdq2y0l55v72c696m28nyymr0000gp/T/tmpzrz55s82',\n", |
| 38 | + " <http.client.HTTPMessage at 0x119553358>)" |
| 39 | + ] |
| 40 | + }, |
| 41 | + "execution_count": 5, |
| 42 | + "metadata": {}, |
| 43 | + "output_type": "execute_result" |
| 44 | + } |
| 45 | + ], |
| 46 | + "source": [ |
| 47 | + "train_file = tempfile.NamedTemporaryFile()\n", |
| 48 | + "test_file = tempfile.NamedTemporaryFile()\n", |
| 49 | + "urllib.request.urlretrieve(\"http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data\", train_file.name)\n", |
| 50 | + "urllib.request.urlretrieve(\"http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.test\", test_file.name)" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 6, |
| 56 | + "metadata": { |
| 57 | + "collapsed": false |
| 58 | + }, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "COLUMNS = [\"age\", \"workclass\", \"fnlwgt\", \"education\", \"education_num\",\n", |
| 62 | + " \"marital_status\", \"occupation\", \"relationship\", \"race\", \"gender\",\n", |
| 63 | + " \"capital_gain\", \"capital_loss\", \"hours_per_week\", \"native_country\",\n", |
| 64 | + " \"income_bracket\"]\n", |
| 65 | + "df_train = pd.read_csv(train_file, names=COLUMNS, skipinitialspace=True)\n", |
| 66 | + "df_test = pd.read_csv(test_file, names=COLUMNS, skipinitialspace=True, skiprows=1)" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": 7, |
| 72 | + "metadata": { |
| 73 | + "collapsed": true |
| 74 | + }, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "LABEL_COLUMN = \"label\"\n", |
| 78 | + "df_train[LABEL_COLUMN] = (df_train[\"income_bracket\"].apply(lambda x: \">50K\" in x)).astype(int)\n", |
| 79 | + "df_test[LABEL_COLUMN] = (df_test[\"income_bracket\"].apply(lambda x: \">50K\" in x)).astype(int)" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": 8, |
| 85 | + "metadata": { |
| 86 | + "collapsed": true |
| 87 | + }, |
| 88 | + "outputs": [], |
| 89 | + "source": [ |
| 90 | + "CATEGORICAL_COLUMNS = [\"workclass\", \"education\", \"marital_status\", \"occupation\",\n", |
| 91 | + " \"relationship\", \"race\", \"gender\", \"native_country\"]\n", |
| 92 | + "CONTINUOUS_COLUMNS = [\"age\", \"education_num\", \"capital_gain\", \"capital_loss\", \"hours_per_week\"]" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": 9, |
| 98 | + "metadata": { |
| 99 | + "collapsed": false |
| 100 | + }, |
| 101 | + "outputs": [ |
| 102 | + { |
| 103 | + "data": { |
| 104 | + "text/html": [ |
| 105 | + "<div>\n", |
| 106 | + "<style>\n", |
| 107 | + " .dataframe thead tr:only-child th {\n", |
| 108 | + " text-align: right;\n", |
| 109 | + " }\n", |
| 110 | + "\n", |
| 111 | + " .dataframe thead th {\n", |
| 112 | + " text-align: left;\n", |
| 113 | + " }\n", |
| 114 | + "\n", |
| 115 | + " .dataframe tbody tr th {\n", |
| 116 | + " vertical-align: top;\n", |
| 117 | + " }\n", |
| 118 | + "</style>\n", |
| 119 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 120 | + " <thead>\n", |
| 121 | + " <tr style=\"text-align: right;\">\n", |
| 122 | + " <th></th>\n", |
| 123 | + " <th>age</th>\n", |
| 124 | + " <th>workclass</th>\n", |
| 125 | + " <th>fnlwgt</th>\n", |
| 126 | + " <th>education</th>\n", |
| 127 | + " <th>education_num</th>\n", |
| 128 | + " <th>marital_status</th>\n", |
| 129 | + " <th>occupation</th>\n", |
| 130 | + " <th>relationship</th>\n", |
| 131 | + " <th>race</th>\n", |
| 132 | + " <th>gender</th>\n", |
| 133 | + " <th>capital_gain</th>\n", |
| 134 | + " <th>capital_loss</th>\n", |
| 135 | + " <th>hours_per_week</th>\n", |
| 136 | + " <th>native_country</th>\n", |
| 137 | + " <th>income_bracket</th>\n", |
| 138 | + " <th>label</th>\n", |
| 139 | + " </tr>\n", |
| 140 | + " </thead>\n", |
| 141 | + " <tbody>\n", |
| 142 | + " <tr>\n", |
| 143 | + " <th>0</th>\n", |
| 144 | + " <td>39</td>\n", |
| 145 | + " <td>State-gov</td>\n", |
| 146 | + " <td>77516</td>\n", |
| 147 | + " <td>Bachelors</td>\n", |
| 148 | + " <td>13</td>\n", |
| 149 | + " <td>Never-married</td>\n", |
| 150 | + " <td>Adm-clerical</td>\n", |
| 151 | + " <td>Not-in-family</td>\n", |
| 152 | + " <td>White</td>\n", |
| 153 | + " <td>Male</td>\n", |
| 154 | + " <td>2174</td>\n", |
| 155 | + " <td>0</td>\n", |
| 156 | + " <td>40</td>\n", |
| 157 | + " <td>United-States</td>\n", |
| 158 | + " <td><=50K</td>\n", |
| 159 | + " <td>0</td>\n", |
| 160 | + " </tr>\n", |
| 161 | + " <tr>\n", |
| 162 | + " <th>1</th>\n", |
| 163 | + " <td>50</td>\n", |
| 164 | + " <td>Self-emp-not-inc</td>\n", |
| 165 | + " <td>83311</td>\n", |
| 166 | + " <td>Bachelors</td>\n", |
| 167 | + " <td>13</td>\n", |
| 168 | + " <td>Married-civ-spouse</td>\n", |
| 169 | + " <td>Exec-managerial</td>\n", |
| 170 | + " <td>Husband</td>\n", |
| 171 | + " <td>White</td>\n", |
| 172 | + " <td>Male</td>\n", |
| 173 | + " <td>0</td>\n", |
| 174 | + " <td>0</td>\n", |
| 175 | + " <td>13</td>\n", |
| 176 | + " <td>United-States</td>\n", |
| 177 | + " <td><=50K</td>\n", |
| 178 | + " <td>0</td>\n", |
| 179 | + " </tr>\n", |
| 180 | + " <tr>\n", |
| 181 | + " <th>2</th>\n", |
| 182 | + " <td>38</td>\n", |
| 183 | + " <td>Private</td>\n", |
| 184 | + " <td>215646</td>\n", |
| 185 | + " <td>HS-grad</td>\n", |
| 186 | + " <td>9</td>\n", |
| 187 | + " <td>Divorced</td>\n", |
| 188 | + " <td>Handlers-cleaners</td>\n", |
| 189 | + " <td>Not-in-family</td>\n", |
| 190 | + " <td>White</td>\n", |
| 191 | + " <td>Male</td>\n", |
| 192 | + " <td>0</td>\n", |
| 193 | + " <td>0</td>\n", |
| 194 | + " <td>40</td>\n", |
| 195 | + " <td>United-States</td>\n", |
| 196 | + " <td><=50K</td>\n", |
| 197 | + " <td>0</td>\n", |
| 198 | + " </tr>\n", |
| 199 | + " <tr>\n", |
| 200 | + " <th>3</th>\n", |
| 201 | + " <td>53</td>\n", |
| 202 | + " <td>Private</td>\n", |
| 203 | + " <td>234721</td>\n", |
| 204 | + " <td>11th</td>\n", |
| 205 | + " <td>7</td>\n", |
| 206 | + " <td>Married-civ-spouse</td>\n", |
| 207 | + " <td>Handlers-cleaners</td>\n", |
| 208 | + " <td>Husband</td>\n", |
| 209 | + " <td>Black</td>\n", |
| 210 | + " <td>Male</td>\n", |
| 211 | + " <td>0</td>\n", |
| 212 | + " <td>0</td>\n", |
| 213 | + " <td>40</td>\n", |
| 214 | + " <td>United-States</td>\n", |
| 215 | + " <td><=50K</td>\n", |
| 216 | + " <td>0</td>\n", |
| 217 | + " </tr>\n", |
| 218 | + " <tr>\n", |
| 219 | + " <th>4</th>\n", |
| 220 | + " <td>28</td>\n", |
| 221 | + " <td>Private</td>\n", |
| 222 | + " <td>338409</td>\n", |
| 223 | + " <td>Bachelors</td>\n", |
| 224 | + " <td>13</td>\n", |
| 225 | + " <td>Married-civ-spouse</td>\n", |
| 226 | + " <td>Prof-specialty</td>\n", |
| 227 | + " <td>Wife</td>\n", |
| 228 | + " <td>Black</td>\n", |
| 229 | + " <td>Female</td>\n", |
| 230 | + " <td>0</td>\n", |
| 231 | + " <td>0</td>\n", |
| 232 | + " <td>40</td>\n", |
| 233 | + " <td>Cuba</td>\n", |
| 234 | + " <td><=50K</td>\n", |
| 235 | + " <td>0</td>\n", |
| 236 | + " </tr>\n", |
| 237 | + " </tbody>\n", |
| 238 | + "</table>\n", |
| 239 | + "</div>" |
| 240 | + ], |
| 241 | + "text/plain": [ |
| 242 | + " age workclass fnlwgt education education_num \\\n", |
| 243 | + "0 39 State-gov 77516 Bachelors 13 \n", |
| 244 | + "1 50 Self-emp-not-inc 83311 Bachelors 13 \n", |
| 245 | + "2 38 Private 215646 HS-grad 9 \n", |
| 246 | + "3 53 Private 234721 11th 7 \n", |
| 247 | + "4 28 Private 338409 Bachelors 13 \n", |
| 248 | + "\n", |
| 249 | + " marital_status occupation relationship race gender \\\n", |
| 250 | + "0 Never-married Adm-clerical Not-in-family White Male \n", |
| 251 | + "1 Married-civ-spouse Exec-managerial Husband White Male \n", |
| 252 | + "2 Divorced Handlers-cleaners Not-in-family White Male \n", |
| 253 | + "3 Married-civ-spouse Handlers-cleaners Husband Black Male \n", |
| 254 | + "4 Married-civ-spouse Prof-specialty Wife Black Female \n", |
| 255 | + "\n", |
| 256 | + " capital_gain capital_loss hours_per_week native_country income_bracket \\\n", |
| 257 | + "0 2174 0 40 United-States <=50K \n", |
| 258 | + "1 0 0 13 United-States <=50K \n", |
| 259 | + "2 0 0 40 United-States <=50K \n", |
| 260 | + "3 0 0 40 United-States <=50K \n", |
| 261 | + "4 0 0 40 Cuba <=50K \n", |
| 262 | + "\n", |
| 263 | + " label \n", |
| 264 | + "0 0 \n", |
| 265 | + "1 0 \n", |
| 266 | + "2 0 \n", |
| 267 | + "3 0 \n", |
| 268 | + "4 0 " |
| 269 | + ] |
| 270 | + }, |
| 271 | + "execution_count": 9, |
| 272 | + "metadata": {}, |
| 273 | + "output_type": "execute_result" |
| 274 | + } |
| 275 | + ], |
| 276 | + "source": [ |
| 277 | + "df_train.head(5)" |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "code", |
| 282 | + "execution_count": 10, |
| 283 | + "metadata": { |
| 284 | + "collapsed": true |
| 285 | + }, |
| 286 | + "outputs": [], |
| 287 | + "source": [ |
| 288 | + "import tensorflow as tf\n", |
| 289 | + "\n", |
| 290 | + "def input_fn(df):\n", |
| 291 | + " # Creates a dictionary mapping from each continuous feature column name (k) to\n", |
| 292 | + " # the values of that column stored in a constant Tensor.\n", |
| 293 | + " continuous_cols = {k: tf.constant(df[k].values)\n", |
| 294 | + " for k in CONTINUOUS_COLUMNS}\n", |
| 295 | + " # Creates a dictionary mapping from each categorical feature column name (k)\n", |
| 296 | + " # to the values of that column stored in a tf.SparseTensor.\n", |
| 297 | + " categorical_cols = {k: tf.SparseTensor(\n", |
| 298 | + " indices=[[i, 0] for i in range(df[k].size)],\n", |
| 299 | + " values=df[k].values,\n", |
| 300 | + " dense_shape=[df[k].size, 1])\n", |
| 301 | + " for k in CATEGORICAL_COLUMNS}\n", |
| 302 | + " # Merges the two dictionaries into one.\n", |
| 303 | + " feature_cols = dict(continuous_cols.items() + categorical_cols.items())\n", |
| 304 | + " # Converts the label column into a constant Tensor.\n", |
| 305 | + " label = tf.constant(df[LABEL_COLUMN].values)\n", |
| 306 | + " # Returns the feature columns and the label.\n", |
| 307 | + " return feature_cols, label\n", |
| 308 | + "\n", |
| 309 | + "def train_input_fn():\n", |
| 310 | + " return input_fn(df_train)\n", |
| 311 | + "\n", |
| 312 | + "def eval_input_fn():\n", |
| 313 | + " return input_fn(df_test)" |
| 314 | + ] |
| 315 | + }, |
| 316 | + { |
| 317 | + "cell_type": "code", |
| 318 | + "execution_count": 11, |
| 319 | + "metadata": { |
| 320 | + "collapsed": true |
| 321 | + }, |
| 322 | + "outputs": [], |
| 323 | + "source": [ |
| 324 | + "gender = tf.contrib.layers.sparse_column_with_keys(\n", |
| 325 | + " column_name=\"gender\", keys=[\"Female\", \"Male\"])" |
| 326 | + ] |
| 327 | + }, |
| 328 | + { |
| 329 | + "cell_type": "code", |
| 330 | + "execution_count": 12, |
| 331 | + "metadata": { |
| 332 | + "collapsed": true |
| 333 | + }, |
| 334 | + "outputs": [], |
| 335 | + "source": [ |
| 336 | + "education = tf.contrib.layers.sparse_column_with_hash_bucket(\"education\", hash_bucket_size=1000)" |
| 337 | + ] |
| 338 | + }, |
| 339 | + { |
| 340 | + "cell_type": "code", |
| 341 | + "execution_count": 13, |
| 342 | + "metadata": { |
| 343 | + "collapsed": true |
| 344 | + }, |
| 345 | + "outputs": [], |
| 346 | + "source": [ |
| 347 | + "race = tf.contrib.layers.sparse_column_with_hash_bucket(\"race\", hash_bucket_size=100)\n", |
| 348 | + "marital_status = tf.contrib.layers.sparse_column_with_hash_bucket(\"marital_status\", hash_bucket_size=100)\n", |
| 349 | + "relationship = tf.contrib.layers.sparse_column_with_hash_bucket(\"relationship\", hash_bucket_size=100)\n", |
| 350 | + "workclass = tf.contrib.layers.sparse_column_with_hash_bucket(\"workclass\", hash_bucket_size=100)\n", |
| 351 | + "occupation = tf.contrib.layers.sparse_column_with_hash_bucket(\"occupation\", hash_bucket_size=1000)\n", |
| 352 | + "native_country = tf.contrib.layers.sparse_column_with_hash_bucket(\"native_country\", hash_bucket_size=1000)" |
| 353 | + ] |
| 354 | + }, |
| 355 | + { |
| 356 | + "cell_type": "code", |
| 357 | + "execution_count": null, |
| 358 | + "metadata": { |
| 359 | + "collapsed": true |
| 360 | + }, |
| 361 | + "outputs": [], |
| 362 | + "source": [] |
| 363 | + } |
| 364 | + ], |
| 365 | + "metadata": { |
| 366 | + "anaconda-cloud": {}, |
| 367 | + "kernelspec": { |
| 368 | + "display_name": "Python [conda env:snakes]", |
| 369 | + "language": "python", |
| 370 | + "name": "conda-env-snakes-py" |
| 371 | + }, |
| 372 | + "language_info": { |
| 373 | + "codemirror_mode": { |
| 374 | + "name": "ipython", |
| 375 | + "version": 3 |
| 376 | + }, |
| 377 | + "file_extension": ".py", |
| 378 | + "mimetype": "text/x-python", |
| 379 | + "name": "python", |
| 380 | + "nbconvert_exporter": "python", |
| 381 | + "pygments_lexer": "ipython3", |
| 382 | + "version": "3.6.1" |
| 383 | + } |
| 384 | + }, |
| 385 | + "nbformat": 4, |
| 386 | + "nbformat_minor": 1 |
| 387 | +} |
0 commit comments