Skip to content

Commit 5a2a811

Browse files
author
Greg Fitzgerald
committed
Moved the builtins documentation to lib/builtins/
And fixed typos in the ASan readme. Differential Revision: http://reviews.llvm.org/D3927 git-svn-id: https://llvm.org/svn/llvm-project/compiler-rt/trunk@209778 91177308-0d34-0410-b5e6-96231b3b80d8
1 parent 8c72423 commit 5a2a811

File tree

3 files changed

+346
-336
lines changed

3 files changed

+346
-336
lines changed

README.txt

-332
Original file line numberDiff line numberDiff line change
@@ -9,335 +9,3 @@ terms of the license agreement found in LICENSE.txt.
99

1010
================================
1111

12-
This is a replacement library for libgcc. Each function is contained
13-
in its own file. Each function has a corresponding unit test under
14-
test/Unit.
15-
16-
A rudimentary script to test each file is in the file called
17-
test/Unit/test.
18-
19-
Here is the specification for this library:
20-
21-
http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22-
23-
Here is a synopsis of the contents of this library:
24-
25-
typedef int si_int;
26-
typedef unsigned su_int;
27-
28-
typedef long long di_int;
29-
typedef unsigned long long du_int;
30-
31-
// Integral bit manipulation
32-
33-
di_int __ashldi3(di_int a, si_int b); // a << b
34-
ti_int __ashlti3(ti_int a, si_int b); // a << b
35-
36-
di_int __ashrdi3(di_int a, si_int b); // a >> b arithmetic (sign fill)
37-
ti_int __ashrti3(ti_int a, si_int b); // a >> b arithmetic (sign fill)
38-
di_int __lshrdi3(di_int a, si_int b); // a >> b logical (zero fill)
39-
ti_int __lshrti3(ti_int a, si_int b); // a >> b logical (zero fill)
40-
41-
si_int __clzsi2(si_int a); // count leading zeros
42-
si_int __clzdi2(di_int a); // count leading zeros
43-
si_int __clzti2(ti_int a); // count leading zeros
44-
si_int __ctzsi2(si_int a); // count trailing zeros
45-
si_int __ctzdi2(di_int a); // count trailing zeros
46-
si_int __ctzti2(ti_int a); // count trailing zeros
47-
48-
si_int __ffsdi2(di_int a); // find least significant 1 bit
49-
si_int __ffsti2(ti_int a); // find least significant 1 bit
50-
51-
si_int __paritysi2(si_int a); // bit parity
52-
si_int __paritydi2(di_int a); // bit parity
53-
si_int __parityti2(ti_int a); // bit parity
54-
55-
si_int __popcountsi2(si_int a); // bit population
56-
si_int __popcountdi2(di_int a); // bit population
57-
si_int __popcountti2(ti_int a); // bit population
58-
59-
uint32_t __bswapsi2(uint32_t a); // a byteswapped, arm only
60-
uint64_t __bswapdi2(uint64_t a); // a byteswapped, arm only
61-
62-
// Integral arithmetic
63-
64-
di_int __negdi2 (di_int a); // -a
65-
ti_int __negti2 (ti_int a); // -a
66-
di_int __muldi3 (di_int a, di_int b); // a * b
67-
ti_int __multi3 (ti_int a, ti_int b); // a * b
68-
si_int __divsi3 (si_int a, si_int b); // a / b signed
69-
di_int __divdi3 (di_int a, di_int b); // a / b signed
70-
ti_int __divti3 (ti_int a, ti_int b); // a / b signed
71-
su_int __udivsi3 (su_int n, su_int d); // a / b unsigned
72-
du_int __udivdi3 (du_int a, du_int b); // a / b unsigned
73-
tu_int __udivti3 (tu_int a, tu_int b); // a / b unsigned
74-
si_int __modsi3 (si_int a, si_int b); // a % b signed
75-
di_int __moddi3 (di_int a, di_int b); // a % b signed
76-
ti_int __modti3 (ti_int a, ti_int b); // a % b signed
77-
su_int __umodsi3 (su_int a, su_int b); // a % b unsigned
78-
du_int __umoddi3 (du_int a, du_int b); // a % b unsigned
79-
tu_int __umodti3 (tu_int a, tu_int b); // a % b unsigned
80-
du_int __udivmoddi4(du_int a, du_int b, du_int* rem); // a / b, *rem = a % b unsigned
81-
tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem); // a / b, *rem = a % b unsigned
82-
su_int __udivmodsi4(su_int a, su_int b, su_int* rem); // a / b, *rem = a % b unsigned
83-
si_int __divmodsi4(si_int a, si_int b, si_int* rem); // a / b, *rem = a % b signed
84-
85-
86-
87-
// Integral arithmetic with trapping overflow
88-
89-
si_int __absvsi2(si_int a); // abs(a)
90-
di_int __absvdi2(di_int a); // abs(a)
91-
ti_int __absvti2(ti_int a); // abs(a)
92-
93-
si_int __negvsi2(si_int a); // -a
94-
di_int __negvdi2(di_int a); // -a
95-
ti_int __negvti2(ti_int a); // -a
96-
97-
si_int __addvsi3(si_int a, si_int b); // a + b
98-
di_int __addvdi3(di_int a, di_int b); // a + b
99-
ti_int __addvti3(ti_int a, ti_int b); // a + b
100-
101-
si_int __subvsi3(si_int a, si_int b); // a - b
102-
di_int __subvdi3(di_int a, di_int b); // a - b
103-
ti_int __subvti3(ti_int a, ti_int b); // a - b
104-
105-
si_int __mulvsi3(si_int a, si_int b); // a * b
106-
di_int __mulvdi3(di_int a, di_int b); // a * b
107-
ti_int __mulvti3(ti_int a, ti_int b); // a * b
108-
109-
110-
// Integral arithmetic which returns if overflow
111-
112-
si_int __mulosi4(si_int a, si_int b, int* overflow); // a * b, overflow set to one if result not in signed range
113-
di_int __mulodi4(di_int a, di_int b, int* overflow); // a * b, overflow set to one if result not in signed range
114-
ti_int __muloti4(ti_int a, ti_int b, int* overflow); // a * b, overflow set to
115-
one if result not in signed range
116-
117-
118-
// Integral comparison: a < b -> 0
119-
// a == b -> 1
120-
// a > b -> 2
121-
122-
si_int __cmpdi2 (di_int a, di_int b);
123-
si_int __cmpti2 (ti_int a, ti_int b);
124-
si_int __ucmpdi2(du_int a, du_int b);
125-
si_int __ucmpti2(tu_int a, tu_int b);
126-
127-
// Integral / floating point conversion
128-
129-
di_int __fixsfdi( float a);
130-
di_int __fixdfdi( double a);
131-
di_int __fixxfdi(long double a);
132-
133-
ti_int __fixsfti( float a);
134-
ti_int __fixdfti( double a);
135-
ti_int __fixxfti(long double a);
136-
uint64_t __fixtfdi(long double input); // ppc only, doesn't match documentation
137-
138-
su_int __fixunssfsi( float a);
139-
su_int __fixunsdfsi( double a);
140-
su_int __fixunsxfsi(long double a);
141-
142-
du_int __fixunssfdi( float a);
143-
du_int __fixunsdfdi( double a);
144-
du_int __fixunsxfdi(long double a);
145-
146-
tu_int __fixunssfti( float a);
147-
tu_int __fixunsdfti( double a);
148-
tu_int __fixunsxfti(long double a);
149-
uint64_t __fixunstfdi(long double input); // ppc only
150-
151-
float __floatdisf(di_int a);
152-
double __floatdidf(di_int a);
153-
long double __floatdixf(di_int a);
154-
long double __floatditf(int64_t a); // ppc only
155-
156-
float __floattisf(ti_int a);
157-
double __floattidf(ti_int a);
158-
long double __floattixf(ti_int a);
159-
160-
float __floatundisf(du_int a);
161-
double __floatundidf(du_int a);
162-
long double __floatundixf(du_int a);
163-
long double __floatunditf(uint64_t a); // ppc only
164-
165-
float __floatuntisf(tu_int a);
166-
double __floatuntidf(tu_int a);
167-
long double __floatuntixf(tu_int a);
168-
169-
// Floating point raised to integer power
170-
171-
float __powisf2( float a, si_int b); // a ^ b
172-
double __powidf2( double a, si_int b); // a ^ b
173-
long double __powixf2(long double a, si_int b); // a ^ b
174-
long double __powitf2(long double a, si_int b); // ppc only, a ^ b
175-
176-
// Complex arithmetic
177-
178-
// (a + ib) * (c + id)
179-
180-
float _Complex __mulsc3( float a, float b, float c, float d);
181-
double _Complex __muldc3(double a, double b, double c, double d);
182-
long double _Complex __mulxc3(long double a, long double b,
183-
long double c, long double d);
184-
long double _Complex __multc3(long double a, long double b,
185-
long double c, long double d); // ppc only
186-
187-
// (a + ib) / (c + id)
188-
189-
float _Complex __divsc3( float a, float b, float c, float d);
190-
double _Complex __divdc3(double a, double b, double c, double d);
191-
long double _Complex __divxc3(long double a, long double b,
192-
long double c, long double d);
193-
long double _Complex __divtc3(long double a, long double b,
194-
long double c, long double d); // ppc only
195-
196-
197-
// Runtime support
198-
199-
// __clear_cache() is used to tell process that new instructions have been
200-
// written to an address range. Necessary on processors that do not have
201-
// a unified instruction and data cache.
202-
void __clear_cache(void* start, void* end);
203-
204-
// __enable_execute_stack() is used with nested functions when a trampoline
205-
// function is written onto the stack and that page range needs to be made
206-
// executable.
207-
void __enable_execute_stack(void* addr);
208-
209-
// __gcc_personality_v0() is normally only called by the system unwinder.
210-
// C code (as opposed to C++) normally does not need a personality function
211-
// because there are no catch clauses or destructors to be run. But there
212-
// is a C language extension __attribute__((cleanup(func))) which marks local
213-
// variables as needing the cleanup function "func" to be run when the
214-
// variable goes out of scope. That includes when an exception is thrown,
215-
// so a personality handler is needed.
216-
_Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
217-
uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
218-
_Unwind_Context_t context);
219-
220-
// for use with some implementations of assert() in <assert.h>
221-
void __eprintf(const char* format, const char* assertion_expression,
222-
const char* line, const char* file);
223-
224-
225-
226-
// Power PC specific functions
227-
228-
// There is no C interface to the saveFP/restFP functions. They are helper
229-
// functions called by the prolog and epilog of functions that need to save
230-
// a number of non-volatile float point registers.
231-
saveFP
232-
restFP
233-
234-
// PowerPC has a standard template for trampoline functions. This function
235-
// generates a custom trampoline function with the specific realFunc
236-
// and localsPtr values.
237-
void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
238-
const void* realFunc, void* localsPtr);
239-
240-
// adds two 128-bit double-double precision values ( x + y )
241-
long double __gcc_qadd(long double x, long double y);
242-
243-
// subtracts two 128-bit double-double precision values ( x - y )
244-
long double __gcc_qsub(long double x, long double y);
245-
246-
// multiples two 128-bit double-double precision values ( x * y )
247-
long double __gcc_qmul(long double x, long double y);
248-
249-
// divides two 128-bit double-double precision values ( x / y )
250-
long double __gcc_qdiv(long double a, long double b);
251-
252-
253-
// ARM specific functions
254-
255-
// There is no C interface to the switch* functions. These helper functions
256-
// are only needed by Thumb1 code for efficient switch table generation.
257-
switch16
258-
switch32
259-
switch8
260-
switchu8
261-
262-
// There is no C interface to the *_vfp_d8_d15_regs functions. There are
263-
// called in the prolog and epilog of Thumb1 functions. When the C++ ABI use
264-
// SJLJ for exceptions, each function with a catch clause or destuctors needs
265-
// to save and restore all registers in it prolog and epliog. But there is
266-
// no way to access vector and high float registers from thumb1 code, so the
267-
// compiler must add call outs to these helper functions in the prolog and
268-
// epilog.
269-
restore_vfp_d8_d15_regs
270-
save_vfp_d8_d15_regs
271-
272-
273-
// Note: long ago ARM processors did not have floating point hardware support.
274-
// Floating point was done in software and floating point parameters were
275-
// passed in integer registers. When hardware support was added for floating
276-
// point, new *vfp functions were added to do the same operations but with
277-
// floating point parameters in floating point registers.
278-
279-
// Undocumented functions
280-
281-
float __addsf3vfp(float a, float b); // Appears to return a + b
282-
double __adddf3vfp(double a, double b); // Appears to return a + b
283-
float __divsf3vfp(float a, float b); // Appears to return a / b
284-
double __divdf3vfp(double a, double b); // Appears to return a / b
285-
int __eqsf2vfp(float a, float b); // Appears to return one
286-
// iff a == b and neither is NaN.
287-
int __eqdf2vfp(double a, double b); // Appears to return one
288-
// iff a == b and neither is NaN.
289-
double __extendsfdf2vfp(float a); // Appears to convert from
290-
// float to double.
291-
int __fixdfsivfp(double a); // Appears to convert from
292-
// double to int.
293-
int __fixsfsivfp(float a); // Appears to convert from
294-
// float to int.
295-
unsigned int __fixunssfsivfp(float a); // Appears to convert from
296-
// float to unsigned int.
297-
unsigned int __fixunsdfsivfp(double a); // Appears to convert from
298-
// double to unsigned int.
299-
double __floatsidfvfp(int a); // Appears to convert from
300-
// int to double.
301-
float __floatsisfvfp(int a); // Appears to convert from
302-
// int to float.
303-
double __floatunssidfvfp(unsigned int a); // Appears to convert from
304-
// unisgned int to double.
305-
float __floatunssisfvfp(unsigned int a); // Appears to convert from
306-
// unisgned int to float.
307-
int __gedf2vfp(double a, double b); // Appears to return __gedf2
308-
// (a >= b)
309-
int __gesf2vfp(float a, float b); // Appears to return __gesf2
310-
// (a >= b)
311-
int __gtdf2vfp(double a, double b); // Appears to return __gtdf2
312-
// (a > b)
313-
int __gtsf2vfp(float a, float b); // Appears to return __gtsf2
314-
// (a > b)
315-
int __ledf2vfp(double a, double b); // Appears to return __ledf2
316-
// (a <= b)
317-
int __lesf2vfp(float a, float b); // Appears to return __lesf2
318-
// (a <= b)
319-
int __ltdf2vfp(double a, double b); // Appears to return __ltdf2
320-
// (a < b)
321-
int __ltsf2vfp(float a, float b); // Appears to return __ltsf2
322-
// (a < b)
323-
double __muldf3vfp(double a, double b); // Appears to return a * b
324-
float __mulsf3vfp(float a, float b); // Appears to return a * b
325-
int __nedf2vfp(double a, double b); // Appears to return __nedf2
326-
// (a != b)
327-
double __negdf2vfp(double a); // Appears to return -a
328-
float __negsf2vfp(float a); // Appears to return -a
329-
float __negsf2vfp(float a); // Appears to return -a
330-
double __subdf3vfp(double a, double b); // Appears to return a - b
331-
float __subsf3vfp(float a, float b); // Appears to return a - b
332-
float __truncdfsf2vfp(double a); // Appears to convert from
333-
// double to float.
334-
int __unorddf2vfp(double a, double b); // Appears to return __unorddf2
335-
int __unordsf2vfp(float a, float b); // Appears to return __unordsf2
336-
337-
338-
Preconditions are listed for each function at the definition when there are any.
339-
Any preconditions reflect the specification at
340-
http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
341-
342-
Assumptions are listed in "int_lib.h", and in individual files. Where possible
343-
assumptions are checked at compile time.

lib/asan/README.txt

+3-4
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,15 @@
11
AddressSanitizer RT
22
================================
3-
This directory contains sources of the AddressSanitizer (asan) run-time library.
3+
This directory contains sources of the AddressSanitizer (asan) runtime library.
44
We are in the process of integrating AddressSanitizer with LLVM, stay tuned.
55

6-
Directory structre:
6+
Directory structure:
77
README.txt : This file.
88
Makefile.mk : File for make-based build.
99
CMakeLists.txt : File for cmake-based build.
10-
asan_*.{cc,h} : Sources of the asan run-time lirbary.
10+
asan_*.{cc,h} : Sources of the asan runtime library.
1111
scripts/* : Helper scripts.
1212
tests/* : ASan unit tests.
13-
lit_tests/* : ASan output tests.
1413

1514
Also ASan runtime needs the following libraries:
1615
lib/interception/ : Machinery used to intercept function calls.

0 commit comments

Comments
 (0)