@@ -9,335 +9,3 @@ terms of the license agreement found in LICENSE.txt.
99
1010================================
1111
12- This is a replacement library for libgcc. Each function is contained
13- in its own file. Each function has a corresponding unit test under
14- test/Unit.
15-
16- A rudimentary script to test each file is in the file called
17- test/Unit/test.
18-
19- Here is the specification for this library:
20-
21- http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22-
23- Here is a synopsis of the contents of this library:
24-
25- typedef int si_int;
26- typedef unsigned su_int;
27-
28- typedef long long di_int;
29- typedef unsigned long long du_int;
30-
31- // Integral bit manipulation
32-
33- di_int __ashldi3(di_int a, si_int b); // a << b
34- ti_int __ashlti3(ti_int a, si_int b); // a << b
35-
36- di_int __ashrdi3(di_int a, si_int b); // a >> b arithmetic (sign fill)
37- ti_int __ashrti3(ti_int a, si_int b); // a >> b arithmetic (sign fill)
38- di_int __lshrdi3(di_int a, si_int b); // a >> b logical (zero fill)
39- ti_int __lshrti3(ti_int a, si_int b); // a >> b logical (zero fill)
40-
41- si_int __clzsi2(si_int a); // count leading zeros
42- si_int __clzdi2(di_int a); // count leading zeros
43- si_int __clzti2(ti_int a); // count leading zeros
44- si_int __ctzsi2(si_int a); // count trailing zeros
45- si_int __ctzdi2(di_int a); // count trailing zeros
46- si_int __ctzti2(ti_int a); // count trailing zeros
47-
48- si_int __ffsdi2(di_int a); // find least significant 1 bit
49- si_int __ffsti2(ti_int a); // find least significant 1 bit
50-
51- si_int __paritysi2(si_int a); // bit parity
52- si_int __paritydi2(di_int a); // bit parity
53- si_int __parityti2(ti_int a); // bit parity
54-
55- si_int __popcountsi2(si_int a); // bit population
56- si_int __popcountdi2(di_int a); // bit population
57- si_int __popcountti2(ti_int a); // bit population
58-
59- uint32_t __bswapsi2(uint32_t a); // a byteswapped, arm only
60- uint64_t __bswapdi2(uint64_t a); // a byteswapped, arm only
61-
62- // Integral arithmetic
63-
64- di_int __negdi2 (di_int a); // -a
65- ti_int __negti2 (ti_int a); // -a
66- di_int __muldi3 (di_int a, di_int b); // a * b
67- ti_int __multi3 (ti_int a, ti_int b); // a * b
68- si_int __divsi3 (si_int a, si_int b); // a / b signed
69- di_int __divdi3 (di_int a, di_int b); // a / b signed
70- ti_int __divti3 (ti_int a, ti_int b); // a / b signed
71- su_int __udivsi3 (su_int n, su_int d); // a / b unsigned
72- du_int __udivdi3 (du_int a, du_int b); // a / b unsigned
73- tu_int __udivti3 (tu_int a, tu_int b); // a / b unsigned
74- si_int __modsi3 (si_int a, si_int b); // a % b signed
75- di_int __moddi3 (di_int a, di_int b); // a % b signed
76- ti_int __modti3 (ti_int a, ti_int b); // a % b signed
77- su_int __umodsi3 (su_int a, su_int b); // a % b unsigned
78- du_int __umoddi3 (du_int a, du_int b); // a % b unsigned
79- tu_int __umodti3 (tu_int a, tu_int b); // a % b unsigned
80- du_int __udivmoddi4(du_int a, du_int b, du_int* rem); // a / b, *rem = a % b unsigned
81- tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem); // a / b, *rem = a % b unsigned
82- su_int __udivmodsi4(su_int a, su_int b, su_int* rem); // a / b, *rem = a % b unsigned
83- si_int __divmodsi4(si_int a, si_int b, si_int* rem); // a / b, *rem = a % b signed
84-
85-
86-
87- // Integral arithmetic with trapping overflow
88-
89- si_int __absvsi2(si_int a); // abs(a)
90- di_int __absvdi2(di_int a); // abs(a)
91- ti_int __absvti2(ti_int a); // abs(a)
92-
93- si_int __negvsi2(si_int a); // -a
94- di_int __negvdi2(di_int a); // -a
95- ti_int __negvti2(ti_int a); // -a
96-
97- si_int __addvsi3(si_int a, si_int b); // a + b
98- di_int __addvdi3(di_int a, di_int b); // a + b
99- ti_int __addvti3(ti_int a, ti_int b); // a + b
100-
101- si_int __subvsi3(si_int a, si_int b); // a - b
102- di_int __subvdi3(di_int a, di_int b); // a - b
103- ti_int __subvti3(ti_int a, ti_int b); // a - b
104-
105- si_int __mulvsi3(si_int a, si_int b); // a * b
106- di_int __mulvdi3(di_int a, di_int b); // a * b
107- ti_int __mulvti3(ti_int a, ti_int b); // a * b
108-
109-
110- // Integral arithmetic which returns if overflow
111-
112- si_int __mulosi4(si_int a, si_int b, int* overflow); // a * b, overflow set to one if result not in signed range
113- di_int __mulodi4(di_int a, di_int b, int* overflow); // a * b, overflow set to one if result not in signed range
114- ti_int __muloti4(ti_int a, ti_int b, int* overflow); // a * b, overflow set to
115- one if result not in signed range
116-
117-
118- // Integral comparison: a < b -> 0
119- // a == b -> 1
120- // a > b -> 2
121-
122- si_int __cmpdi2 (di_int a, di_int b);
123- si_int __cmpti2 (ti_int a, ti_int b);
124- si_int __ucmpdi2(du_int a, du_int b);
125- si_int __ucmpti2(tu_int a, tu_int b);
126-
127- // Integral / floating point conversion
128-
129- di_int __fixsfdi( float a);
130- di_int __fixdfdi( double a);
131- di_int __fixxfdi(long double a);
132-
133- ti_int __fixsfti( float a);
134- ti_int __fixdfti( double a);
135- ti_int __fixxfti(long double a);
136- uint64_t __fixtfdi(long double input); // ppc only, doesn't match documentation
137-
138- su_int __fixunssfsi( float a);
139- su_int __fixunsdfsi( double a);
140- su_int __fixunsxfsi(long double a);
141-
142- du_int __fixunssfdi( float a);
143- du_int __fixunsdfdi( double a);
144- du_int __fixunsxfdi(long double a);
145-
146- tu_int __fixunssfti( float a);
147- tu_int __fixunsdfti( double a);
148- tu_int __fixunsxfti(long double a);
149- uint64_t __fixunstfdi(long double input); // ppc only
150-
151- float __floatdisf(di_int a);
152- double __floatdidf(di_int a);
153- long double __floatdixf(di_int a);
154- long double __floatditf(int64_t a); // ppc only
155-
156- float __floattisf(ti_int a);
157- double __floattidf(ti_int a);
158- long double __floattixf(ti_int a);
159-
160- float __floatundisf(du_int a);
161- double __floatundidf(du_int a);
162- long double __floatundixf(du_int a);
163- long double __floatunditf(uint64_t a); // ppc only
164-
165- float __floatuntisf(tu_int a);
166- double __floatuntidf(tu_int a);
167- long double __floatuntixf(tu_int a);
168-
169- // Floating point raised to integer power
170-
171- float __powisf2( float a, si_int b); // a ^ b
172- double __powidf2( double a, si_int b); // a ^ b
173- long double __powixf2(long double a, si_int b); // a ^ b
174- long double __powitf2(long double a, si_int b); // ppc only, a ^ b
175-
176- // Complex arithmetic
177-
178- // (a + ib) * (c + id)
179-
180- float _Complex __mulsc3( float a, float b, float c, float d);
181- double _Complex __muldc3(double a, double b, double c, double d);
182- long double _Complex __mulxc3(long double a, long double b,
183- long double c, long double d);
184- long double _Complex __multc3(long double a, long double b,
185- long double c, long double d); // ppc only
186-
187- // (a + ib) / (c + id)
188-
189- float _Complex __divsc3( float a, float b, float c, float d);
190- double _Complex __divdc3(double a, double b, double c, double d);
191- long double _Complex __divxc3(long double a, long double b,
192- long double c, long double d);
193- long double _Complex __divtc3(long double a, long double b,
194- long double c, long double d); // ppc only
195-
196-
197- // Runtime support
198-
199- // __clear_cache() is used to tell process that new instructions have been
200- // written to an address range. Necessary on processors that do not have
201- // a unified instruction and data cache.
202- void __clear_cache(void* start, void* end);
203-
204- // __enable_execute_stack() is used with nested functions when a trampoline
205- // function is written onto the stack and that page range needs to be made
206- // executable.
207- void __enable_execute_stack(void* addr);
208-
209- // __gcc_personality_v0() is normally only called by the system unwinder.
210- // C code (as opposed to C++) normally does not need a personality function
211- // because there are no catch clauses or destructors to be run. But there
212- // is a C language extension __attribute__((cleanup(func))) which marks local
213- // variables as needing the cleanup function "func" to be run when the
214- // variable goes out of scope. That includes when an exception is thrown,
215- // so a personality handler is needed.
216- _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
217- uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
218- _Unwind_Context_t context);
219-
220- // for use with some implementations of assert() in <assert.h>
221- void __eprintf(const char* format, const char* assertion_expression,
222- const char* line, const char* file);
223-
224-
225-
226- // Power PC specific functions
227-
228- // There is no C interface to the saveFP/restFP functions. They are helper
229- // functions called by the prolog and epilog of functions that need to save
230- // a number of non-volatile float point registers.
231- saveFP
232- restFP
233-
234- // PowerPC has a standard template for trampoline functions. This function
235- // generates a custom trampoline function with the specific realFunc
236- // and localsPtr values.
237- void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
238- const void* realFunc, void* localsPtr);
239-
240- // adds two 128-bit double-double precision values ( x + y )
241- long double __gcc_qadd(long double x, long double y);
242-
243- // subtracts two 128-bit double-double precision values ( x - y )
244- long double __gcc_qsub(long double x, long double y);
245-
246- // multiples two 128-bit double-double precision values ( x * y )
247- long double __gcc_qmul(long double x, long double y);
248-
249- // divides two 128-bit double-double precision values ( x / y )
250- long double __gcc_qdiv(long double a, long double b);
251-
252-
253- // ARM specific functions
254-
255- // There is no C interface to the switch* functions. These helper functions
256- // are only needed by Thumb1 code for efficient switch table generation.
257- switch16
258- switch32
259- switch8
260- switchu8
261-
262- // There is no C interface to the *_vfp_d8_d15_regs functions. There are
263- // called in the prolog and epilog of Thumb1 functions. When the C++ ABI use
264- // SJLJ for exceptions, each function with a catch clause or destuctors needs
265- // to save and restore all registers in it prolog and epliog. But there is
266- // no way to access vector and high float registers from thumb1 code, so the
267- // compiler must add call outs to these helper functions in the prolog and
268- // epilog.
269- restore_vfp_d8_d15_regs
270- save_vfp_d8_d15_regs
271-
272-
273- // Note: long ago ARM processors did not have floating point hardware support.
274- // Floating point was done in software and floating point parameters were
275- // passed in integer registers. When hardware support was added for floating
276- // point, new *vfp functions were added to do the same operations but with
277- // floating point parameters in floating point registers.
278-
279- // Undocumented functions
280-
281- float __addsf3vfp(float a, float b); // Appears to return a + b
282- double __adddf3vfp(double a, double b); // Appears to return a + b
283- float __divsf3vfp(float a, float b); // Appears to return a / b
284- double __divdf3vfp(double a, double b); // Appears to return a / b
285- int __eqsf2vfp(float a, float b); // Appears to return one
286- // iff a == b and neither is NaN.
287- int __eqdf2vfp(double a, double b); // Appears to return one
288- // iff a == b and neither is NaN.
289- double __extendsfdf2vfp(float a); // Appears to convert from
290- // float to double.
291- int __fixdfsivfp(double a); // Appears to convert from
292- // double to int.
293- int __fixsfsivfp(float a); // Appears to convert from
294- // float to int.
295- unsigned int __fixunssfsivfp(float a); // Appears to convert from
296- // float to unsigned int.
297- unsigned int __fixunsdfsivfp(double a); // Appears to convert from
298- // double to unsigned int.
299- double __floatsidfvfp(int a); // Appears to convert from
300- // int to double.
301- float __floatsisfvfp(int a); // Appears to convert from
302- // int to float.
303- double __floatunssidfvfp(unsigned int a); // Appears to convert from
304- // unisgned int to double.
305- float __floatunssisfvfp(unsigned int a); // Appears to convert from
306- // unisgned int to float.
307- int __gedf2vfp(double a, double b); // Appears to return __gedf2
308- // (a >= b)
309- int __gesf2vfp(float a, float b); // Appears to return __gesf2
310- // (a >= b)
311- int __gtdf2vfp(double a, double b); // Appears to return __gtdf2
312- // (a > b)
313- int __gtsf2vfp(float a, float b); // Appears to return __gtsf2
314- // (a > b)
315- int __ledf2vfp(double a, double b); // Appears to return __ledf2
316- // (a <= b)
317- int __lesf2vfp(float a, float b); // Appears to return __lesf2
318- // (a <= b)
319- int __ltdf2vfp(double a, double b); // Appears to return __ltdf2
320- // (a < b)
321- int __ltsf2vfp(float a, float b); // Appears to return __ltsf2
322- // (a < b)
323- double __muldf3vfp(double a, double b); // Appears to return a * b
324- float __mulsf3vfp(float a, float b); // Appears to return a * b
325- int __nedf2vfp(double a, double b); // Appears to return __nedf2
326- // (a != b)
327- double __negdf2vfp(double a); // Appears to return -a
328- float __negsf2vfp(float a); // Appears to return -a
329- float __negsf2vfp(float a); // Appears to return -a
330- double __subdf3vfp(double a, double b); // Appears to return a - b
331- float __subsf3vfp(float a, float b); // Appears to return a - b
332- float __truncdfsf2vfp(double a); // Appears to convert from
333- // double to float.
334- int __unorddf2vfp(double a, double b); // Appears to return __unorddf2
335- int __unordsf2vfp(float a, float b); // Appears to return __unordsf2
336-
337-
338- Preconditions are listed for each function at the definition when there are any.
339- Any preconditions reflect the specification at
340- http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
341-
342- Assumptions are listed in "int_lib.h", and in individual files. Where possible
343- assumptions are checked at compile time.
0 commit comments