@@ -9,335 +9,3 @@ terms of the license agreement found in LICENSE.txt.
9
9
10
10
================================
11
11
12
- This is a replacement library for libgcc. Each function is contained
13
- in its own file. Each function has a corresponding unit test under
14
- test/Unit.
15
-
16
- A rudimentary script to test each file is in the file called
17
- test/Unit/test.
18
-
19
- Here is the specification for this library:
20
-
21
- http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22
-
23
- Here is a synopsis of the contents of this library:
24
-
25
- typedef int si_int;
26
- typedef unsigned su_int;
27
-
28
- typedef long long di_int;
29
- typedef unsigned long long du_int;
30
-
31
- // Integral bit manipulation
32
-
33
- di_int __ashldi3(di_int a, si_int b); // a << b
34
- ti_int __ashlti3(ti_int a, si_int b); // a << b
35
-
36
- di_int __ashrdi3(di_int a, si_int b); // a >> b arithmetic (sign fill)
37
- ti_int __ashrti3(ti_int a, si_int b); // a >> b arithmetic (sign fill)
38
- di_int __lshrdi3(di_int a, si_int b); // a >> b logical (zero fill)
39
- ti_int __lshrti3(ti_int a, si_int b); // a >> b logical (zero fill)
40
-
41
- si_int __clzsi2(si_int a); // count leading zeros
42
- si_int __clzdi2(di_int a); // count leading zeros
43
- si_int __clzti2(ti_int a); // count leading zeros
44
- si_int __ctzsi2(si_int a); // count trailing zeros
45
- si_int __ctzdi2(di_int a); // count trailing zeros
46
- si_int __ctzti2(ti_int a); // count trailing zeros
47
-
48
- si_int __ffsdi2(di_int a); // find least significant 1 bit
49
- si_int __ffsti2(ti_int a); // find least significant 1 bit
50
-
51
- si_int __paritysi2(si_int a); // bit parity
52
- si_int __paritydi2(di_int a); // bit parity
53
- si_int __parityti2(ti_int a); // bit parity
54
-
55
- si_int __popcountsi2(si_int a); // bit population
56
- si_int __popcountdi2(di_int a); // bit population
57
- si_int __popcountti2(ti_int a); // bit population
58
-
59
- uint32_t __bswapsi2(uint32_t a); // a byteswapped, arm only
60
- uint64_t __bswapdi2(uint64_t a); // a byteswapped, arm only
61
-
62
- // Integral arithmetic
63
-
64
- di_int __negdi2 (di_int a); // -a
65
- ti_int __negti2 (ti_int a); // -a
66
- di_int __muldi3 (di_int a, di_int b); // a * b
67
- ti_int __multi3 (ti_int a, ti_int b); // a * b
68
- si_int __divsi3 (si_int a, si_int b); // a / b signed
69
- di_int __divdi3 (di_int a, di_int b); // a / b signed
70
- ti_int __divti3 (ti_int a, ti_int b); // a / b signed
71
- su_int __udivsi3 (su_int n, su_int d); // a / b unsigned
72
- du_int __udivdi3 (du_int a, du_int b); // a / b unsigned
73
- tu_int __udivti3 (tu_int a, tu_int b); // a / b unsigned
74
- si_int __modsi3 (si_int a, si_int b); // a % b signed
75
- di_int __moddi3 (di_int a, di_int b); // a % b signed
76
- ti_int __modti3 (ti_int a, ti_int b); // a % b signed
77
- su_int __umodsi3 (su_int a, su_int b); // a % b unsigned
78
- du_int __umoddi3 (du_int a, du_int b); // a % b unsigned
79
- tu_int __umodti3 (tu_int a, tu_int b); // a % b unsigned
80
- du_int __udivmoddi4(du_int a, du_int b, du_int* rem); // a / b, *rem = a % b unsigned
81
- tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem); // a / b, *rem = a % b unsigned
82
- su_int __udivmodsi4(su_int a, su_int b, su_int* rem); // a / b, *rem = a % b unsigned
83
- si_int __divmodsi4(si_int a, si_int b, si_int* rem); // a / b, *rem = a % b signed
84
-
85
-
86
-
87
- // Integral arithmetic with trapping overflow
88
-
89
- si_int __absvsi2(si_int a); // abs(a)
90
- di_int __absvdi2(di_int a); // abs(a)
91
- ti_int __absvti2(ti_int a); // abs(a)
92
-
93
- si_int __negvsi2(si_int a); // -a
94
- di_int __negvdi2(di_int a); // -a
95
- ti_int __negvti2(ti_int a); // -a
96
-
97
- si_int __addvsi3(si_int a, si_int b); // a + b
98
- di_int __addvdi3(di_int a, di_int b); // a + b
99
- ti_int __addvti3(ti_int a, ti_int b); // a + b
100
-
101
- si_int __subvsi3(si_int a, si_int b); // a - b
102
- di_int __subvdi3(di_int a, di_int b); // a - b
103
- ti_int __subvti3(ti_int a, ti_int b); // a - b
104
-
105
- si_int __mulvsi3(si_int a, si_int b); // a * b
106
- di_int __mulvdi3(di_int a, di_int b); // a * b
107
- ti_int __mulvti3(ti_int a, ti_int b); // a * b
108
-
109
-
110
- // Integral arithmetic which returns if overflow
111
-
112
- si_int __mulosi4(si_int a, si_int b, int* overflow); // a * b, overflow set to one if result not in signed range
113
- di_int __mulodi4(di_int a, di_int b, int* overflow); // a * b, overflow set to one if result not in signed range
114
- ti_int __muloti4(ti_int a, ti_int b, int* overflow); // a * b, overflow set to
115
- one if result not in signed range
116
-
117
-
118
- // Integral comparison: a < b -> 0
119
- // a == b -> 1
120
- // a > b -> 2
121
-
122
- si_int __cmpdi2 (di_int a, di_int b);
123
- si_int __cmpti2 (ti_int a, ti_int b);
124
- si_int __ucmpdi2(du_int a, du_int b);
125
- si_int __ucmpti2(tu_int a, tu_int b);
126
-
127
- // Integral / floating point conversion
128
-
129
- di_int __fixsfdi( float a);
130
- di_int __fixdfdi( double a);
131
- di_int __fixxfdi(long double a);
132
-
133
- ti_int __fixsfti( float a);
134
- ti_int __fixdfti( double a);
135
- ti_int __fixxfti(long double a);
136
- uint64_t __fixtfdi(long double input); // ppc only, doesn't match documentation
137
-
138
- su_int __fixunssfsi( float a);
139
- su_int __fixunsdfsi( double a);
140
- su_int __fixunsxfsi(long double a);
141
-
142
- du_int __fixunssfdi( float a);
143
- du_int __fixunsdfdi( double a);
144
- du_int __fixunsxfdi(long double a);
145
-
146
- tu_int __fixunssfti( float a);
147
- tu_int __fixunsdfti( double a);
148
- tu_int __fixunsxfti(long double a);
149
- uint64_t __fixunstfdi(long double input); // ppc only
150
-
151
- float __floatdisf(di_int a);
152
- double __floatdidf(di_int a);
153
- long double __floatdixf(di_int a);
154
- long double __floatditf(int64_t a); // ppc only
155
-
156
- float __floattisf(ti_int a);
157
- double __floattidf(ti_int a);
158
- long double __floattixf(ti_int a);
159
-
160
- float __floatundisf(du_int a);
161
- double __floatundidf(du_int a);
162
- long double __floatundixf(du_int a);
163
- long double __floatunditf(uint64_t a); // ppc only
164
-
165
- float __floatuntisf(tu_int a);
166
- double __floatuntidf(tu_int a);
167
- long double __floatuntixf(tu_int a);
168
-
169
- // Floating point raised to integer power
170
-
171
- float __powisf2( float a, si_int b); // a ^ b
172
- double __powidf2( double a, si_int b); // a ^ b
173
- long double __powixf2(long double a, si_int b); // a ^ b
174
- long double __powitf2(long double a, si_int b); // ppc only, a ^ b
175
-
176
- // Complex arithmetic
177
-
178
- // (a + ib) * (c + id)
179
-
180
- float _Complex __mulsc3( float a, float b, float c, float d);
181
- double _Complex __muldc3(double a, double b, double c, double d);
182
- long double _Complex __mulxc3(long double a, long double b,
183
- long double c, long double d);
184
- long double _Complex __multc3(long double a, long double b,
185
- long double c, long double d); // ppc only
186
-
187
- // (a + ib) / (c + id)
188
-
189
- float _Complex __divsc3( float a, float b, float c, float d);
190
- double _Complex __divdc3(double a, double b, double c, double d);
191
- long double _Complex __divxc3(long double a, long double b,
192
- long double c, long double d);
193
- long double _Complex __divtc3(long double a, long double b,
194
- long double c, long double d); // ppc only
195
-
196
-
197
- // Runtime support
198
-
199
- // __clear_cache() is used to tell process that new instructions have been
200
- // written to an address range. Necessary on processors that do not have
201
- // a unified instruction and data cache.
202
- void __clear_cache(void* start, void* end);
203
-
204
- // __enable_execute_stack() is used with nested functions when a trampoline
205
- // function is written onto the stack and that page range needs to be made
206
- // executable.
207
- void __enable_execute_stack(void* addr);
208
-
209
- // __gcc_personality_v0() is normally only called by the system unwinder.
210
- // C code (as opposed to C++) normally does not need a personality function
211
- // because there are no catch clauses or destructors to be run. But there
212
- // is a C language extension __attribute__((cleanup(func))) which marks local
213
- // variables as needing the cleanup function "func" to be run when the
214
- // variable goes out of scope. That includes when an exception is thrown,
215
- // so a personality handler is needed.
216
- _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
217
- uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
218
- _Unwind_Context_t context);
219
-
220
- // for use with some implementations of assert() in <assert.h>
221
- void __eprintf(const char* format, const char* assertion_expression,
222
- const char* line, const char* file);
223
-
224
-
225
-
226
- // Power PC specific functions
227
-
228
- // There is no C interface to the saveFP/restFP functions. They are helper
229
- // functions called by the prolog and epilog of functions that need to save
230
- // a number of non-volatile float point registers.
231
- saveFP
232
- restFP
233
-
234
- // PowerPC has a standard template for trampoline functions. This function
235
- // generates a custom trampoline function with the specific realFunc
236
- // and localsPtr values.
237
- void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
238
- const void* realFunc, void* localsPtr);
239
-
240
- // adds two 128-bit double-double precision values ( x + y )
241
- long double __gcc_qadd(long double x, long double y);
242
-
243
- // subtracts two 128-bit double-double precision values ( x - y )
244
- long double __gcc_qsub(long double x, long double y);
245
-
246
- // multiples two 128-bit double-double precision values ( x * y )
247
- long double __gcc_qmul(long double x, long double y);
248
-
249
- // divides two 128-bit double-double precision values ( x / y )
250
- long double __gcc_qdiv(long double a, long double b);
251
-
252
-
253
- // ARM specific functions
254
-
255
- // There is no C interface to the switch* functions. These helper functions
256
- // are only needed by Thumb1 code for efficient switch table generation.
257
- switch16
258
- switch32
259
- switch8
260
- switchu8
261
-
262
- // There is no C interface to the *_vfp_d8_d15_regs functions. There are
263
- // called in the prolog and epilog of Thumb1 functions. When the C++ ABI use
264
- // SJLJ for exceptions, each function with a catch clause or destuctors needs
265
- // to save and restore all registers in it prolog and epliog. But there is
266
- // no way to access vector and high float registers from thumb1 code, so the
267
- // compiler must add call outs to these helper functions in the prolog and
268
- // epilog.
269
- restore_vfp_d8_d15_regs
270
- save_vfp_d8_d15_regs
271
-
272
-
273
- // Note: long ago ARM processors did not have floating point hardware support.
274
- // Floating point was done in software and floating point parameters were
275
- // passed in integer registers. When hardware support was added for floating
276
- // point, new *vfp functions were added to do the same operations but with
277
- // floating point parameters in floating point registers.
278
-
279
- // Undocumented functions
280
-
281
- float __addsf3vfp(float a, float b); // Appears to return a + b
282
- double __adddf3vfp(double a, double b); // Appears to return a + b
283
- float __divsf3vfp(float a, float b); // Appears to return a / b
284
- double __divdf3vfp(double a, double b); // Appears to return a / b
285
- int __eqsf2vfp(float a, float b); // Appears to return one
286
- // iff a == b and neither is NaN.
287
- int __eqdf2vfp(double a, double b); // Appears to return one
288
- // iff a == b and neither is NaN.
289
- double __extendsfdf2vfp(float a); // Appears to convert from
290
- // float to double.
291
- int __fixdfsivfp(double a); // Appears to convert from
292
- // double to int.
293
- int __fixsfsivfp(float a); // Appears to convert from
294
- // float to int.
295
- unsigned int __fixunssfsivfp(float a); // Appears to convert from
296
- // float to unsigned int.
297
- unsigned int __fixunsdfsivfp(double a); // Appears to convert from
298
- // double to unsigned int.
299
- double __floatsidfvfp(int a); // Appears to convert from
300
- // int to double.
301
- float __floatsisfvfp(int a); // Appears to convert from
302
- // int to float.
303
- double __floatunssidfvfp(unsigned int a); // Appears to convert from
304
- // unisgned int to double.
305
- float __floatunssisfvfp(unsigned int a); // Appears to convert from
306
- // unisgned int to float.
307
- int __gedf2vfp(double a, double b); // Appears to return __gedf2
308
- // (a >= b)
309
- int __gesf2vfp(float a, float b); // Appears to return __gesf2
310
- // (a >= b)
311
- int __gtdf2vfp(double a, double b); // Appears to return __gtdf2
312
- // (a > b)
313
- int __gtsf2vfp(float a, float b); // Appears to return __gtsf2
314
- // (a > b)
315
- int __ledf2vfp(double a, double b); // Appears to return __ledf2
316
- // (a <= b)
317
- int __lesf2vfp(float a, float b); // Appears to return __lesf2
318
- // (a <= b)
319
- int __ltdf2vfp(double a, double b); // Appears to return __ltdf2
320
- // (a < b)
321
- int __ltsf2vfp(float a, float b); // Appears to return __ltsf2
322
- // (a < b)
323
- double __muldf3vfp(double a, double b); // Appears to return a * b
324
- float __mulsf3vfp(float a, float b); // Appears to return a * b
325
- int __nedf2vfp(double a, double b); // Appears to return __nedf2
326
- // (a != b)
327
- double __negdf2vfp(double a); // Appears to return -a
328
- float __negsf2vfp(float a); // Appears to return -a
329
- float __negsf2vfp(float a); // Appears to return -a
330
- double __subdf3vfp(double a, double b); // Appears to return a - b
331
- float __subsf3vfp(float a, float b); // Appears to return a - b
332
- float __truncdfsf2vfp(double a); // Appears to convert from
333
- // double to float.
334
- int __unorddf2vfp(double a, double b); // Appears to return __unorddf2
335
- int __unordsf2vfp(float a, float b); // Appears to return __unordsf2
336
-
337
-
338
- Preconditions are listed for each function at the definition when there are any.
339
- Any preconditions reflect the specification at
340
- http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
341
-
342
- Assumptions are listed in "int_lib.h", and in individual files. Where possible
343
- assumptions are checked at compile time.
0 commit comments