-
Notifications
You must be signed in to change notification settings - Fork 345
/
Copy pathmodmachine.c
1050 lines (910 loc) · 41.3 KB
/
modmachine.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This file is part of the MicroPython ESP32 project, https://github.com/loboris/MicroPython_ESP32_psRAM_LoBo
*
* Development of the code in this file was sponsored by Microbric Pty Ltd
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2015 Damien P. George
* Copyright (c) 2016 Paul Sokolovsky
* Copyright (c) 2018 LoBo (https://github.com/loboris)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_task_wdt.h"
#include "rom/ets_sys.h"
#include "rom/rtc.h"
#include "rom/gpio.h"
#include "soc/rtc.h"
#include "soc/uart_reg.h"
#include "soc/timer_group_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/sens_reg.h"
#include "esp_system.h"
#include "soc/dport_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "rom/uart.h"
#include "esp_sleep.h"
#include "esp_heap_caps.h"
#include "esp_log.h"
#include "esp_err.h"
#include "esp_pm.h"
#include "esp_wifi.h"
#include "driver/uart.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "extmod/machine_mem.h"
#include "extmod/machine_signal.h"
#include "extmod/machine_pulse.h"
#include "extmod/vfs_native.h"
#include "modmachine.h"
#include "machine_ulp.h"
#include "mpsleep.h"
#include "machine_rtc.h"
#include "uart.h"
#include "modnetwork.h"
#if MICROPY_PY_MACHINE
//extern uint8_t temprature_sens_read();
extern uint16_t rom_phy_get_vdd33();
// === Global variables ===
bool mpy_use_spiram = false;
nvs_handle mpy_nvs_handle = 0;
machine_rtc_config_t RTC_DATA_ATTR machine_rtc_config = {0};
bool i2s_driver_installed = false;
int mpy_heap_size = CONFIG_MICROPY_HEAP_SIZE * 1024;
int MPY_DEFAULT_STACK_SIZE = 16*1024;
int MPY_MAX_STACK_SIZE = 32*1024;
int MPY_DEFAULT_HEAP_SIZE = 80*1024;
int MPY_MIN_HEAP_SIZE = 48*1024;
int MPY_MAX_HEAP_SIZE = 96*1024;
int hdr_maxlen = 512;
int body_maxlen = 1024;
int ssh2_hdr_maxlen = 512;
int ssh2_body_maxlen = 1024;
// === Variables stored in RTC_SLOW_MEM ===
static uint64_t RTC_DATA_ATTR s_t_wake;
static uint64_t RTC_DATA_ATTR stub_timeout;
static uint64_t RTC_DATA_ATTR stub_timer;
static uint32_t RTC_DATA_ATTR stub_temp;
static uint32_t RTC_DATA_ATTR stub_flag;
static uint16_t RTC_DATA_ATTR stub_timer_inc;
static const char RTC_RODATA_ATTR wake_fmt_str[] = "[%u] info=%u\n";
//-----------------------------------
static void RTC_IRAM_ATTR wake_stub()
{
// Clear MMU for CPU 0
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG, _DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) | DPORT_PRO_CACHE_MMU_IA_CLR);
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG, _DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) & (~DPORT_PRO_CACHE_MMU_IA_CLR));
// ROM code has not started yet, so we need to set delay factor used by ets_delay_us first.
ets_update_cpu_frequency_rom(ets_get_detected_xtal_freq() / 1000000);
// Update time
SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) {
;
}
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR);
// Get current time
const uint64_t s_t_now = (uint64_t)READ_PERI_REG(RTC_CNTL_TIME0_REG) | (((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32);
// Check reset reason
if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET) {
// Not a deepsleep reset, continue booting
goto do_wakeup;
}
// Check wake up cause
if (REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE) & RTC_EXT0_TRIG_EN) {
// === EXT0 wake up ===
if ((machine_rtc_config.ext0_pin >= 0) && (machine_rtc_config.ext0_count > 0)) {
if (machine_rtc_config.pulse_count == 0) machine_rtc_config.ext0_last_time = s_t_now;
else {
if ((s_t_now - machine_rtc_config.ext0_last_time) > stub_timeout) {
machine_rtc_config.pulse_count = 0;
}
machine_rtc_config.ext0_last_time = s_t_now;
}
// Wait inactive ext0 pin level
while(1) {
while (1) {
if (machine_rtc_config.ext0_level) stub_flag = (REG_GET_FIELD(RTC_GPIO_IN_REG, RTC_GPIO_IN_NEXT) & BIT(machine_rtc_config.ext0_rtcpin)) != 0;
else stub_flag = (REG_GET_FIELD(RTC_GPIO_IN_REG, RTC_GPIO_IN_NEXT) & BIT(machine_rtc_config.ext0_rtcpin)) == 0;
if (!stub_flag) break;
REG_WRITE(TIMG_WDTFEED_REG(0), 1);
}
// Debounce, 10 ms
ets_delay_us(10000);
REG_WRITE(TIMG_WDTFEED_REG(0), 1);
if (machine_rtc_config.ext0_level) stub_flag = (REG_GET_FIELD(RTC_GPIO_IN_REG, RTC_GPIO_IN_NEXT) & BIT(machine_rtc_config.ext0_rtcpin)) != 0;
else stub_flag = (REG_GET_FIELD(RTC_GPIO_IN_REG, RTC_GPIO_IN_NEXT) & BIT(machine_rtc_config.ext0_rtcpin)) == 0;
if (stub_flag) break;
}
machine_rtc_config.pulse_count++;
ets_printf(wake_fmt_str, 0, machine_rtc_config.pulse_count);
if (machine_rtc_config.pulse_count >= machine_rtc_config.ext0_count) goto do_wakeup;
ets_delay_us(1000);
REG_WRITE(TIMG_WDTFEED_REG(0), 1);
goto do_sleep;
}
else goto do_wakeup;
}
if (REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE) & RTC_EXT1_TRIG_EN) {
// === EXT1 wake up ===
if (machine_rtc_config.ext1_level == EXT1_WAKEUP_ALL_HIGH) {
// some of the pins is high, but we want ALL to be high
stub_flag = 0;
for(stub_temp = 0; stub_temp < EXT1_WAKEUP_MAX_PINS; stub_temp++) {
if (machine_rtc_config.ext1_pins[stub_temp] >= 0) stub_flag |= BIT(machine_rtc_config.ext1_rtcpins[stub_temp]);
}
if (stub_flag) {
// Wait for all high
stub_temp = 0;
while ((REG_GET_FIELD(RTC_GPIO_IN_REG, RTC_GPIO_IN_NEXT) & stub_flag) != stub_flag) {
ets_delay_us(1000);
REG_WRITE(TIMG_WDTFEED_REG(0), 1);
if ((REG_GET_FIELD(RTC_GPIO_IN_REG, RTC_GPIO_IN_NEXT) & stub_flag) == 0) goto do_sleep;
stub_temp++;
if (stub_temp > 2000) goto do_sleep;
}
goto do_wakeup;
}
else goto do_wakeup;
}
goto do_wakeup;
}
if (!(REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE) & RTC_TIMER_TRIG_EN)) {
// Not a timer wake up, continue booting
goto do_wakeup;
}
// === Reset reason: DEEPSLEEP_RESET & Wake up cause: Timer ===
if ((machine_rtc_config.deepsleep_time) && (machine_rtc_config.deepsleep_interval)) {
// == Set the out pin to active level if configured
if (machine_rtc_config.stub_outpin >= 0) {
gpio_pad_select_gpio(machine_rtc_config.stub_outpin);
if (machine_rtc_config.stub_outpin < 32)
gpio_output_set(machine_rtc_config.stub_outpin_level << machine_rtc_config.stub_outpin,
(machine_rtc_config.stub_outpin_level ? 0 : 1) << machine_rtc_config.stub_outpin,
1<<machine_rtc_config.stub_outpin,0);
else
gpio_output_set_high(machine_rtc_config.stub_outpin_level << (machine_rtc_config.stub_outpin-32),
(machine_rtc_config.stub_outpin_level ? 0 : 1) << (machine_rtc_config.stub_outpin-32),
1<<(machine_rtc_config.stub_outpin-32),0);
}
// == Check remaining sleep time
if (machine_rtc_config.deepsleep_time > machine_rtc_config.deepsleep_interval) {
machine_rtc_config.deepsleep_time -= machine_rtc_config.deepsleep_interval;
s_t_wake = s_t_now + machine_rtc_config.wakeup_delay_ticks;
// Set the pointer of the wake stub function.
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)&wake_stub);
}
else {
if (machine_rtc_config.wakeup_delay_ticks_last) {
s_t_wake = s_t_now + machine_rtc_config.wakeup_delay_ticks_last;
// Next time use the default wake stab
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)&esp_wake_deep_sleep);
}
else {
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)&esp_wake_deep_sleep);
return;
}
}
// == Check if we need to wait in wake stub
if (machine_rtc_config.stub_wait) {
if (machine_rtc_config.stub_wait < 1000) {
ets_delay_us(machine_rtc_config.stub_wait);
REG_WRITE(TIMG_WDTFEED_REG(0), 1);
}
else {
stub_timer = 0;
while (stub_timer < machine_rtc_config.stub_wait) {
ets_delay_us(stub_timer_inc);
REG_WRITE(TIMG_WDTFEED_REG(0), 1);
stub_timer += stub_timer_inc;
}
}
}
// == Reset the led pin if configured
if (machine_rtc_config.stub_outpin >= 0) {
if (machine_rtc_config.stub_outpin < 32)
gpio_output_set(machine_rtc_config.stub_outpin_level << machine_rtc_config.stub_outpin,
(machine_rtc_config.stub_outpin_level ? 1 : 0) << machine_rtc_config.stub_outpin,
1<<machine_rtc_config.stub_outpin,0);
else
gpio_output_set_high(machine_rtc_config.stub_outpin_level << (machine_rtc_config.stub_outpin-32),
(machine_rtc_config.stub_outpin_level ? 1 : 0) << (machine_rtc_config.stub_outpin-32),
1<<(machine_rtc_config.stub_outpin-32),0);
}
}
else goto do_wakeup;
// === Go back to deepsleep ===
// Write clock value to RTC:
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER0_REG, s_t_wake & UINT32_MAX);
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER1_REG, s_t_wake >> 32);
do_sleep:
ets_printf(wake_fmt_str, 88, 88);
// Wait for UART to end transmitting.
while (REG_GET_FIELD(UART_STATUS_REG(0), UART_ST_UTX_OUT)) {
REG_WRITE(TIMG_WDTFEED_REG(0), 1); // feed the watchdog
}
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)&wake_stub);
// Go to sleep.
CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_SLEEP_EN);
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_SLEEP_EN);
// A few CPU cycles may be necessary for the sleep to start...
while (true) {
;
}
// never reaches here.
do_wakeup:
ets_printf(wake_fmt_str, 99, 99);
// Wait for UART to end transmitting.
while (REG_GET_FIELD(UART_STATUS_REG(0), UART_ST_UTX_OUT)) {
REG_WRITE(TIMG_WDTFEED_REG(0), 1); // feed the watchdog
}
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)&wake_stub);
return;
}
//---------------------------------------------
void prepareSleepReset(uint8_t hrst, char *msg)
{
// Umount external & internal fs
externalUmount();
internalUmount();
if (!hrst) {
if (msg) mp_hal_stdout_tx_str(msg);
/*
// stop and deinitialize WiFi
if (wifi_network_state == WIFI_STATE_STARTED) {
wifi_network_state = WIFI_STATE_STOPPED;
wifi_sta_isconnected = false;
wifi_sta_has_ipaddress = false;
wifi_sta_changed_ipaddress = false;
wifi_ap_isconnected = false;
wifi_ap_sta_isconnected = false;
esp_wifi_stop();
esp_wifi_deinit();
}
*/
// deinitialise peripherals
//ToDo: deinitialize other peripherals, threads, services, ...
machine_pins_deinit();
mp_deinit();
fflush(stdout);
}
}
//-----------------------------------------------------------------
STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
// get CPU frequency
return mp_obj_new_int(rtc_clk_cpu_freq_value(rtc_clk_cpu_freq_get()));
}
else {
// set CPU frequency
int freq = mp_obj_get_int(args[0]);
if (freq > 240) freq /= 1000000;
rtc_cpu_freq_t max_freq;
if (!rtc_clk_cpu_freq_from_mhz(freq, &max_freq)) {
char msg[128];
sprintf(msg, "Available frequencies: 2MHz, 80Mhz, 160MHz, 240MHz or %uMHz (XTAL)", rtc_clk_xtal_freq_get());
mp_raise_ValueError(msg);
}
#ifdef CONFIG_PM_ENABLE
esp_pm_config_esp32_t pm_config;
pm_config.max_cpu_freq = max_freq;
pm_config.min_cpu_freq = RTC_CPU_FREQ_XTAL;
pm_config.light_sleep_enable = false;
if (esp_pm_configure(&pm_config) != ESP_OK) {
mp_raise_msg(&mp_type_OSError, "Error configuring frequency");
}
#endif
rtc_clk_cpu_freq_set(max_freq);
uart_set_baudrate(UART_NUM_0, CONFIG_CONSOLE_UART_BAUDRATE);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 1, machine_freq);
//-----------------------------------
STATIC mp_obj_t machine_reset(void) {
prepareSleepReset(1, NULL);
esp_restart(); // This function does not return.
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);
//---------------------------------------
STATIC mp_obj_t machine_unique_id(void) {
uint8_t chipid[6];
esp_efuse_mac_get_default(chipid);
return mp_obj_new_bytes(chipid, 6);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id);
//----------------------------------
STATIC mp_obj_t machine_idle(void) {
taskYIELD();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_idle_obj, machine_idle);
//-----------------------------------------
STATIC mp_obj_t machine_disable_irq(void) {
uint32_t state = MICROPY_BEGIN_ATOMIC_SECTION();
return mp_obj_new_int(state);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_disable_irq_obj, machine_disable_irq);
//-----------------------------------------------------
STATIC mp_obj_t machine_enable_irq(mp_obj_t state_in) {
uint32_t state = mp_obj_get_int(state_in);
MICROPY_END_ATOMIC_SECTION(state);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_enable_irq_obj, machine_enable_irq);
//--------------------------------------------------
static void print_heap_info(multi_heap_info_t *info)
{
mp_printf(&mp_plat_print, " Free: %u\n", info->total_free_bytes);
mp_printf(&mp_plat_print, " Allocated: %u\n", info->total_allocated_bytes);
mp_printf(&mp_plat_print, " Minimum free: %u\n", info->minimum_free_bytes);
mp_printf(&mp_plat_print, " Total blocks: %u\n", info->total_blocks);
mp_printf(&mp_plat_print, "Largest free block: %u\n", info->largest_free_block);
mp_printf(&mp_plat_print, " Allocated blocks: %u\n", info->allocated_blocks);
mp_printf(&mp_plat_print, " Free blocks: %u\n", info->free_blocks);
}
//---------------------------------------
STATIC mp_obj_t machine_heap_info(void) {
multi_heap_info_t info;
mp_printf(&mp_plat_print, "Heap outside of MicroPython heap:\n---------------------------------\n");
heap_caps_get_info(&info, MALLOC_CAP_INTERNAL | MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_DMA);
print_heap_info(&info);
if (mpy_use_spiram) {
#if CONFIG_SPIRAM_USE_MEMMAP
mp_printf(&mp_plat_print, "\nSPIRAM info (MEMMAP used):\n--------------------------\n");
mp_printf(&mp_plat_print, " Total: %u\n", CONFIG_SPIRAM_SIZE);
mp_printf(&mp_plat_print, "Used for MPy heap: %u\n", mpy_heap_size);
mp_printf(&mp_plat_print, " Free (not used): %u\n", CONFIG_SPIRAM_SIZE - mpy_heap_size);
#else
mp_printf(&mp_plat_print, "\nSPIRAM info:\n------------\n");
heap_caps_get_info(&info, MALLOC_CAP_SPIRAM);
print_heap_info(&info);
#endif
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_heap_info_obj, machine_heap_info);
//---------------------------------------------------------------------------------------------
STATIC mp_obj_t machine_deepsleep(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {ARG_sleep_ms, ARG_stub_ms, ARG_stub_led, ARG_stub_ledlevel, ARG_stub_wait};
const mp_arg_t allowed_args[] = {
{ MP_QSTR_sleep_ms, MP_ARG_INT, { .u_int = 0 } },
{ MP_QSTR_stub_ms, MP_ARG_INT, { .u_int = 0 } },
{ MP_QSTR_stub_led, MP_ARG_INT, { .u_int = -1 } },
{ MP_QSTR_stub_ledlevel, MP_ARG_BOOL, { .u_bool = false } },
{ MP_QSTR_stub_wait, MP_ARG_INT, { .u_int = 0 } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
esp_set_deep_sleep_wake_stub(&esp_wake_deep_sleep);
//REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)&esp_wake_deep_sleep);
machine_rtc_config.stub_outpin = -1;
machine_rtc_config.pulse_count = 0;
machine_rtc_config.deepsleep_interval = 0;
machine_rtc_config.stub_wait = 0;
uint32_t s_rtc_clk_cal = (uint64_t)REG_READ(RTC_SLOW_CLK_CAL_REG);
stub_timeout = (uint64_t)(2000000) * (1 << RTC_CLK_CAL_FRACT) / s_rtc_clk_cal;
int64_t stub_sleep = 0;
int64_t sleep_time = args[ARG_sleep_ms].u_int;
if (sleep_time < 0) sleep_time = 0;
if (sleep_time > 0) {
stub_sleep = args[ARG_stub_ms].u_int;
if (stub_sleep < 0) stub_sleep = 0;
if (stub_sleep >= sleep_time) stub_sleep = 0;
}
int led_pin = args[ARG_stub_led].u_int;
if ((led_pin < -1) || (led_pin > 34)) {
mp_raise_ValueError("Wrong led pin !");
}
int64_t wait_in_stub = 0;
if (stub_sleep > 0) {
wait_in_stub = (int64_t)args[ARG_stub_wait].u_int;
if (wait_in_stub < 0) wait_in_stub = 0;
if (wait_in_stub > (stub_sleep*1000)) wait_in_stub = stub_sleep*1000;
machine_rtc_config.stub_wait = wait_in_stub;
stub_timer_inc = 1;
if (wait_in_stub > 100000) stub_timer_inc = 100;
else stub_timer_inc = 10;
}
if (sleep_time > 0) {
if (stub_sleep) esp_sleep_enable_timer_wakeup(stub_sleep * 1000);
else esp_sleep_enable_timer_wakeup(sleep_time * 1000);
machine_rtc_config.deepsleep_time = sleep_time;
}
else {
if ((machine_rtc_config.ext0_pin < 0) && (machine_rtc_config.ext1_pins == 0) && (!machine_rtc_config.wake_on_touch)) {
mp_raise_ValueError("No other wake-up sources configured, sleep time cannot be 0 !");
}
}
if (machine_rtc_config.ext0_pin >= 0) {
ESP_LOGD("DEEP SLEEP", "EXT0=%d\n", machine_rtc_config.ext0_pin);
esp_sleep_enable_ext0_wakeup((gpio_num_t)machine_rtc_config.ext0_pin, machine_rtc_config.ext0_level ? 1 : 0);
esp_set_deep_sleep_wake_stub(&wake_stub);
}
uint64_t ext1_pins = 0;
for (int i = 0; i < EXT1_WAKEUP_MAX_PINS; i++) {
if (machine_rtc_config.ext1_pins[i] >= 0) {
uint64_t pin_bit = (1ll << machine_rtc_config.ext1_pins[i]);
ext1_pins |= pin_bit;
}
}
if (ext1_pins != 0) {
ESP_LOGD("DEEP SLEEP", "EXT1 = [%llx]\n", ext1_pins);
//esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
uint8_t ext1_level = machine_rtc_config.ext1_level;
if (machine_rtc_config.ext1_level == EXT1_WAKEUP_ALL_HIGH) ext1_level = ESP_EXT1_WAKEUP_ANY_HIGH;
esp_sleep_enable_ext1_wakeup(ext1_pins, ext1_level);
esp_set_deep_sleep_wake_stub(&wake_stub);
}
if (machine_rtc_config.wake_on_touch) {
esp_sleep_enable_touchpad_wakeup();
}
ESP_LOGD("DEEP SLEEP", "Sleep time: time=%llu, interval=%llu, pin=%d, level=%d, wait=%llu\n",
sleep_time, stub_sleep, led_pin, args[ARG_stub_ledlevel].u_bool, wait_in_stub);
prepareSleepReset(0, NULL);
if ((stub_sleep) || (led_pin >= 0)) {
if (led_pin >= 0) {
gpio_pad_select_gpio(led_pin);
gpio_set_direction(led_pin, GPIO_MODE_OUTPUT);
gpio_set_level(led_pin, (uint8_t)args[ARG_stub_ledlevel].u_bool ^ 1);
machine_rtc_config.stub_outpin = (uint8_t)led_pin;
machine_rtc_config.stub_outpin_level = (uint8_t)args[ARG_stub_ledlevel].u_bool;
}
else machine_rtc_config.stub_outpin = -1;
if (stub_sleep) {
// Get number of microseconds per RTC clock tick (scaled by 2^19)
// Calculate RTC clock value for wakeup
machine_rtc_config.wakeup_delay_ticks = (stub_sleep * 1000) * (1 << RTC_CLK_CAL_FRACT) / s_rtc_clk_cal;
machine_rtc_config.wakeup_delay_ticks_last = ((sleep_time % stub_sleep) * 1000) * (1 << RTC_CLK_CAL_FRACT) / s_rtc_clk_cal;;
// Set the wake stub function
machine_rtc_config.deepsleep_interval = stub_sleep;
}
esp_set_deep_sleep_wake_stub(&wake_stub);
}
esp_deep_sleep_start(); // This function does not return.
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_deepsleep_obj, 0, machine_deepsleep);
//------------------------------------------
STATIC mp_obj_t machine_wake_reason (void) {
mpsleep_reset_cause_t reset_reason = mpsleep_get_reset_cause ();
mpsleep_wake_reason_t wake_reason = mpsleep_get_wake_reason();
mp_obj_t tuple[2];
tuple[0] = mp_obj_new_int(reset_reason);
tuple[1] = mp_obj_new_int(wake_reason);
return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_wake_reason_obj, machine_wake_reason);
//----------------------------------------
STATIC mp_obj_t machine_wake_desc (void) {
char reason[24] = { 0 };
mp_obj_t tuple[2];
mpsleep_get_reset_desc(reason);
tuple[0] = mp_obj_new_str(reason, strlen(reason));
mpsleep_get_wake_desc(reason);
tuple[1] = mp_obj_new_str(reason, strlen(reason));
return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_wake_desc_obj, machine_wake_desc);
//-----------------------------------------------------------------------
STATIC mp_obj_t machine_stdin_get (mp_obj_t sz_in, mp_obj_t timeout_in) {
mp_int_t timeout = mp_obj_get_int(timeout_in);
mp_int_t sz = mp_obj_get_int(sz_in);
if (sz == 0) {
return mp_const_none;
}
int c = -1;
vstr_t vstr;
mp_int_t recv = 0;
vstr_init_len(&vstr, sz);
xSemaphoreTake(uart0_mutex, UART_SEMAPHORE_WAIT);
uart0_raw_input = 1;
xSemaphoreGive(uart0_mutex);
while (recv < sz) {
c = mp_hal_stdin_rx_chr(timeout);
if (c < 0) break;
vstr.buf[recv++] = (byte)c;
}
xSemaphoreTake(uart0_mutex, UART_SEMAPHORE_WAIT);
uart0_raw_input = 0;
xSemaphoreGive(uart0_mutex);
if (recv == 0) {
return mp_const_none;
}
return mp_obj_new_str_from_vstr(&mp_type_str, &vstr);;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_stdin_get_obj, machine_stdin_get);
//----------------------------------------------------
STATIC mp_obj_t machine_stdout_put (mp_obj_t buf_in) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
mp_int_t len = bufinfo.len;
char *buf = bufinfo.buf;
xSemaphoreTake(uart0_mutex, UART_SEMAPHORE_WAIT);
uart0_raw_input = 1;
xSemaphoreGive(uart0_mutex);
mp_hal_stdout_tx_strn(buf, len);
xSemaphoreTake(uart0_mutex, UART_SEMAPHORE_WAIT);
uart0_raw_input = 0;
xSemaphoreGive(uart0_mutex);
return mp_obj_new_int_from_uint(bufinfo.len);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_stdout_put_obj, machine_stdout_put);
// Assumes 0 <= max <= RAND_MAX
// Returns in the closed interval [0, max]
//--------------------------------------------
uint64_t random_at_most(uint32_t max) {
uint64_t // max <= RAND_MAX < ULONG_MAX, so this is okay.
num_bins = (uint64_t) max + 1,
num_rand = (uint64_t) 0xFFFFFFFF + 1,
bin_size = num_rand / num_bins,
defect = num_rand % num_bins;
uint32_t x;
do {
x = esp_random();
}
while (num_rand - defect <= (uint64_t)x); // This is carefully written not to overflow
// Truncated division is intentional
return x/bin_size;
}
//-----------------------------------------------------------------
STATIC mp_obj_t machine_random(size_t n_args, const mp_obj_t *args)
{
if (n_args == 1) {
uint32_t rmax = mp_obj_get_int(args[0]);
return mp_obj_new_int_from_uint(random_at_most(rmax));
}
uint32_t rmin = mp_obj_get_int(args[0]);
uint32_t rmax = mp_obj_get_int(args[1]);
return mp_obj_new_int_from_uint(rmin + random_at_most(rmax - rmin));
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_random_obj, 1, 2, machine_random);
// ==== NVS Support ===================================================================
static void checkNVS()
{
if (mpy_nvs_handle == 0) {
mp_raise_msg(&mp_type_OSError, "NVS not available!");
}
}
//------------------------------------------------------------------------
STATIC mp_obj_t mod_machine_nvs_set_int (mp_obj_t _key, mp_obj_t _value) {
checkNVS();
const char *key = mp_obj_str_get_str(_key);
uint32_t value = mp_obj_get_int_truncated(_value);
esp_err_t esp_err = nvs_set_i32(mpy_nvs_handle, key, value);
if (ESP_OK == esp_err) {
nvs_commit(mpy_nvs_handle);
}
else if (ESP_ERR_NVS_NOT_ENOUGH_SPACE == esp_err || ESP_ERR_NVS_PAGE_FULL == esp_err || ESP_ERR_NVS_NO_FREE_PAGES == esp_err) {
mp_raise_msg(&mp_type_OSError, "No space available.");
}
else if (ESP_ERR_NVS_INVALID_NAME == esp_err || ESP_ERR_NVS_KEY_TOO_LONG == esp_err) {
mp_raise_msg(&mp_type_OSError, "Key invalid or too long");
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mod_machine_nvs_set_int_obj, mod_machine_nvs_set_int);
//-------------------------------------------------------
STATIC mp_obj_t mod_machine_nvs_get_int (mp_obj_t _key) {
checkNVS();
const char *key = mp_obj_str_get_str(_key);
int value = 0;
if (ESP_ERR_NVS_NOT_FOUND == nvs_get_i32(mpy_nvs_handle, key, &value)) {
return mp_const_none;
}
return mp_obj_new_int(value);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_machine_nvs_get_int_obj, mod_machine_nvs_get_int);
//------------------------------------------------------------------------
STATIC mp_obj_t mod_machine_nvs_set_str (mp_obj_t _key, mp_obj_t _value) {
checkNVS();
const char *key = mp_obj_str_get_str(_key);
const char *value = mp_obj_str_get_str(_value);
esp_err_t esp_err = nvs_set_str(mpy_nvs_handle, key, value);
if (ESP_OK == esp_err) {
nvs_commit(mpy_nvs_handle);
}
else if (ESP_ERR_NVS_NOT_ENOUGH_SPACE == esp_err || ESP_ERR_NVS_PAGE_FULL == esp_err || ESP_ERR_NVS_NO_FREE_PAGES == esp_err) {
mp_raise_msg(&mp_type_OSError, "No space available.");
}
else if (ESP_ERR_NVS_INVALID_NAME == esp_err || ESP_ERR_NVS_KEY_TOO_LONG == esp_err) {
mp_raise_msg(&mp_type_OSError, "Key invalid or too long");
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mod_machine_nvs_set_str_obj, mod_machine_nvs_set_str);
//-------------------------------------------------------
STATIC mp_obj_t mod_machine_nvs_get_str (mp_obj_t _key) {
checkNVS();
const char *key = mp_obj_str_get_str(_key);
size_t len = 0;
mp_obj_t strval = mp_const_none;
esp_err_t ret = nvs_get_str(mpy_nvs_handle, key, NULL, &len);
if ((ret == ESP_OK ) && (len > 0)) {
char *value = malloc(len);
if (value) {
esp_err_t ret = nvs_get_str(mpy_nvs_handle, key, value, &len);
if ((ret == ESP_OK ) && (len > 0)) {
strval = mp_obj_new_str(value, strlen(value));
free(value);
}
}
}
return strval;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_machine_nvs_get_str_obj, mod_machine_nvs_get_str);
//-----------------------------------------------------
STATIC mp_obj_t mod_machine_nvs_erase (mp_obj_t _key) {
checkNVS();
const char *key = mp_obj_str_get_str(_key);
if (ESP_ERR_NVS_NOT_FOUND == nvs_erase_key(mpy_nvs_handle, key)) {
mp_raise_ValueError("Key not found");
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_machine_nvs_erase_obj, mod_machine_nvs_erase);
//------------------------------------------------
STATIC mp_obj_t mod_machine_nvs_erase_all (void) {
checkNVS();
if (ESP_OK != nvs_erase_all(mpy_nvs_handle)) {
mp_raise_msg(&mp_type_OSError, "Operation failed.");
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mod_machine_nvs_erase_all_obj, mod_machine_nvs_erase_all);
// ==== ESP32 log level ===================================================================
//--------------------------------------------------------
static int vprintf_redirected(const char *fmt, va_list ap)
{
int ret = mp_vprintf(&mp_plat_print, fmt, ap);
return ret;
}
static vprintf_like_t orig_log_func = NULL;
static vprintf_like_t prev_log_func = NULL;
static vprintf_like_t mp_log_func = &vprintf_redirected;
//--------------------------------------------------------------------------
STATIC mp_obj_t mod_machine_log_level (mp_obj_t tag_in, mp_obj_t level_in) {
const char *tag = mp_obj_str_get_str(tag_in);
int32_t level = mp_obj_get_int(level_in);
if ((level < 0) || (level > 5)) {
mp_raise_ValueError("Log level 0~5 expected");
}
esp_log_level_set(tag, level);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mod_machine_log_level_obj, mod_machine_log_level);
//---------------------------------------
STATIC mp_obj_t mod_machine_logto_mp () {
if (orig_log_func == NULL) {
orig_log_func = esp_log_set_vprintf(mp_log_func);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mod_machine_logto_mp_obj, mod_machine_logto_mp);
//----------------------------------------
STATIC mp_obj_t mod_machine_logto_esp () {
if (orig_log_func != NULL) {
prev_log_func = esp_log_set_vprintf(orig_log_func);
orig_log_func = NULL;
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mod_machine_logto_esp_obj, mod_machine_logto_esp);
//-----------------------------------
STATIC mp_obj_t mod_machine_tsens() {
int temper = 0;
// --- Using code from esp-idf/components/esp32/test/test_tsens.c ---
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 3, SENS_FORCE_XPD_SAR_S);
SET_PERI_REG_BITS(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_CLK_DIV, 10, SENS_TSENS_CLK_DIV_S);
CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP);
CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_DUMP_OUT);
SET_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP_FORCE);
SET_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP);
ets_delay_us(100);
SET_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_DUMP_OUT);
ets_delay_us(5);
//while(REG_GET_FIELD(SENS_SAR_SLAVE_ADDR3_REG, SENS_TSENS_RDY_OUT) == 0) {
// ;
//}
temper = GET_PERI_REG_BITS2(SENS_SAR_SLAVE_ADDR3_REG, SENS_TSENS_OUT, SENS_TSENS_OUT_S);
// --- Using function from esp-idf/components/esp32/lib/librtc.a ---
//temper = temprature_sens_read();
// The returned temperature is in Fahrenheit, convert to Celsius
float ftemper = (float)(temper - 32) / 1.8;
mp_obj_t tuple[2];
tuple[0] = mp_obj_new_int_from_uint(temper);
tuple[1] = mp_obj_new_float(ftemper);
return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mod_machine_tsens_obj, mod_machine_tsens);
//------------------------------------
STATIC mp_obj_t mod_machine_vdd33() {
uint16_t val = rom_phy_get_vdd33();
return mp_obj_new_int(val);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mod_machine_vdd33_obj, mod_machine_vdd33);
//--------------------------------------------------------------
STATIC mp_obj_t mod_machine_stdin_disable(mp_obj_t pattern_in) {
bool has_pattern = false;
mp_buffer_info_t pattern_buff;
mp_obj_type_t *type = mp_obj_get_type(pattern_in);
char pattern[16] = {'\0'};
if (type->buffer_p.get_buffer != NULL) {
int ret = type->buffer_p.get_buffer(pattern_in, &pattern_buff, MP_BUFFER_READ);
if (ret == 0) {
if ((pattern_buff.len > 0) && (pattern_buff.len < 16)) has_pattern = true;
}
}
if (!has_pattern) {
mp_raise_ValueError("invalid pattern (15 chars allowed)");
}
memcpy(pattern, pattern_buff.buf, pattern_buff.len);
disableStdin(pattern);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_machine_stdin_disable_obj, mod_machine_stdin_disable);
//---------------------------------------
STATIC mp_obj_t mod_machine_reset_wdt() {
mp_hal_reset_wdt();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mod_machine_reset_wdt_obj, mod_machine_reset_wdt);
//-------------------------------------
STATIC mp_obj_t mod_machine_set_wdt() {
mp_hal_set_wdt_tmo();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(mod_machine_set_wdt_obj, mod_machine_set_wdt);
//--------------------------------------------------------------------
STATIC mp_obj_t mod_machine_wdt(size_t n_args, const mp_obj_t *args) {
#ifdef CONFIG_MICROPY_USE_TASK_WDT
esp_err_t res;
res = esp_task_wdt_status(NULL);
if (n_args > 0) {
if ((mp_obj_is_true(args[0])) && (res != ESP_OK)) esp_task_wdt_add(NULL);
else if ((!mp_obj_is_true(args[0])) && (res == ESP_OK)) esp_task_wdt_delete(NULL);
}
res = esp_task_wdt_status(NULL);
if (res == ESP_OK) return mp_const_true;
return mp_const_false;
#else
return mp_const_false;
#endif
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mod_machine_wdt_obj, 0, 1, mod_machine_wdt);
//-----------------------------------------------------------------------
static void _set_stack_heap(char *key, int value, int valmin, int valmax)
{
checkNVS();
if ((value != 0) && ((value < valmin) || (value > valmax))) {
mp_raise_msg(&mp_type_OSError, "Invalid size");
}
esp_err_t esp_err = nvs_set_i32(mpy_nvs_handle, key, value);
if (ESP_OK == esp_err) {
nvs_commit(mpy_nvs_handle);
}
else if (ESP_ERR_NVS_NOT_ENOUGH_SPACE == esp_err || ESP_ERR_NVS_PAGE_FULL == esp_err || ESP_ERR_NVS_NO_FREE_PAGES == esp_err) {
mp_raise_msg(&mp_type_OSError, "No space available for NVS variable.");
}
else if (ESP_ERR_NVS_INVALID_NAME == esp_err || ESP_ERR_NVS_KEY_TOO_LONG == esp_err) {
mp_raise_msg(&mp_type_OSError, "NVS Key invalid or too long");
}
}
//----------------------------------------------------------
STATIC mp_obj_t mod_machine_set_stack_size (mp_obj_t _value)
{
int value = mp_obj_get_int_truncated(_value);
value &= 0x7FFFFFFC;
_set_stack_heap("MPY_StackSize", value, MPY_MIN_STACK_SIZE, MPY_MAX_STACK_SIZE);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_machine_set_stack_size_obj, mod_machine_set_stack_size);
//-----------------------------------------------------------
STATIC mp_obj_t mod_machine_set_heap_size (mp_obj_t _value)
{
int value = mp_obj_get_int_truncated(_value);
value &= 0x7FFFFFFC;
_set_stack_heap("MPY_HeapSize", value, MPY_MIN_HEAP_SIZE, MPY_MAX_HEAP_SIZE);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_machine_set_heap_size_obj, mod_machine_set_heap_size);
//===============================================================
STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) },
{ MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_resetWDT), MP_ROM_PTR(&mod_machine_reset_wdt_obj) },
{ MP_ROM_QSTR(MP_QSTR_setWDT), MP_ROM_PTR(&mod_machine_set_wdt_obj) },
{ MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&mod_machine_wdt_obj) },
{ MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&machine_idle_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_wake_reason), MP_ROM_PTR(&machine_wake_reason_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_wake_description), MP_ROM_PTR(&machine_wake_desc_obj) },
{ MP_ROM_QSTR(MP_QSTR_heap_info), MP_ROM_PTR(&machine_heap_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_stdin_disable), MP_ROM_PTR(&mod_machine_stdin_disable_obj) },
{ MP_ROM_QSTR(MP_QSTR_SetStackSize), MP_ROM_PTR(&mod_machine_set_stack_size_obj) },
{ MP_ROM_QSTR(MP_QSTR_SetHeapSize), MP_ROM_PTR(&mod_machine_set_heap_size_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_nvs_setint), MP_ROM_PTR(&mod_machine_nvs_set_int_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_nvs_getint), MP_ROM_PTR(&mod_machine_nvs_get_int_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_nvs_setstr), MP_ROM_PTR(&mod_machine_nvs_set_str_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_nvs_getstr), MP_ROM_PTR(&mod_machine_nvs_get_str_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_nvs_erase), MP_ROM_PTR(&mod_machine_nvs_erase_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_nvs_erase_all), MP_ROM_PTR(&mod_machine_nvs_erase_all_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_loglevel), MP_ROM_PTR(&mod_machine_log_level_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_redirectlog), MP_ROM_PTR(&mod_machine_logto_mp_obj) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_restorelog), MP_ROM_PTR(&mod_machine_logto_esp_obj) },
{ MP_ROM_QSTR(MP_QSTR_stdin_get), MP_ROM_PTR(&machine_stdin_get_obj) },
{ MP_ROM_QSTR(MP_QSTR_stdout_put), MP_ROM_PTR(&machine_stdout_put_obj) },