-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
executable file
·170 lines (151 loc) · 7.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3
from cryptographic_functions import dh_calculations
from cryptographic_functions import ecc_calculations
from cryptographic_functions import elgamal_calculations
from cryptographic_functions import fermat_calculations
from cryptographic_functions import fiat_shamir_calculations
from cryptographic_functions import modulo_calculations
from cryptographic_functions import modulo_cyclic_groups
from cryptographic_functions import modulo_inverse_additive
from cryptographic_functions import modulo_inverse_multiplicative
from cryptographic_functions import rsa_calculations
from cryptographic_functions import shamir_calculations
__author__ = "Lukas Zorn"
__copyright__ = "Copyright 2021 Lukas Zorn"
__license__ = "GNU GPLv3"
if __name__ == '__main__':
#########################
# Global initial values #
#########################
print_matrix = False # Optional argument
print_linear_factorization = True # Optional argument
#########################
# Modulo initial values #
#########################
modulo_m = 13
modulo_a = 7
modulo_b = 9
# modulo_calculations.addition(modulo_m, modulo_a, modulo_b)
# modulo_calculations.subtraction(modulo_m, modulo_a, modulo_b, print_matrix)
# modulo_calculations.multiplication(modulo_m, modulo_a, modulo_b)
# modulo_calculations.division(modulo_m, modulo_a, modulo_b, print_matrix, print_linear_factorization)
# modulo_cyclic_groups.mcg(modulo_m, print_matrix)
# modulo_inverse_additive.mia(modulo_m, modulo_a, print_matrix)
# modulo_inverse_multiplicative.mim(modulo_m, modulo_a, print_matrix, print_linear_factorization)
######################
# RSA initial values #
######################
rsa_p = 3
rsa_q = 11
rsa_n = 33
rsa_e = 3 # Optional argument
rsa_d = 7
rsa_public_key = (rsa_e, rsa_n)
rsa_private_key = (rsa_d, rsa_n)
rsa_plaintext = 4
rsa_ciphertext = 31
rsa_x = 1 # Optional argument
rsa_c = 23 # Optional argument
# rsa_calculations.keypair_generation(rsa_p, rsa_q, rsa_e, print_matrix, print_linear_factorization)
# rsa_calculations.encryption(rsa_public_key, rsa_plaintext)
# rsa_calculations.decryption(rsa_private_key, rsa_ciphertext)
# rsa_calculations.pollard_rho(rsa_n, rsa_x, rsa_c)
#################################
# Diffie–Hellman initial values #
#################################
dh_p = 23
dh_g = 5
dh_a = 6 # Optional argument
dh_b = 15 # Optional argument
dh_a_secret = 20084 # Alpha
dh_b_secret = 21261 # Beta
# dh_calculations.key_exchange(dh_p, dh_g, dh_a, dh_b)
# elgamal_calculations.bsgs((dh_p, dh_g, dh_a_secret), print_matrix, print_linear_factorization)
#############################################
# Shamir three-pass protocol initial values #
#############################################
shamir_p = 23
shamir_a = 3 # Optional argument
shamir_a_i = 15
shamir_b = 5 # Optional argument
shamir_b_i = 9
shamir_k = 2 # Optional argument
shamir_key_a = (shamir_a, shamir_a_i, shamir_p)
shamir_key_b = (shamir_b, shamir_b_i, shamir_p)
# shamir_calculations.keypair_generation(shamir_p, shamir_a, shamir_b, print_matrix, print_linear_factorization)
# shamir_calculations.key_exchange(shamir_key_a, shamir_key_b, shamir_k)
##########################
# ElGamal initial values #
##########################
elgamal_p = 7
elgamal_g = 5
elgamal_d = 4 # Optional argument
elgamal_e = 2
elgamal_k = 3 # Optional argument
elgamal_public_key = (elgamal_p, elgamal_g, elgamal_e)
elgamal_private_key = (elgamal_p, elgamal_d)
elgamal_plaintext = 3
elgamal_ciphertext = (20, 12)
elgamal_r = 7 # Optional argument
elgamal_p_n = 3
elgamal_s = 7
elgamal_signed_message = (elgamal_plaintext, elgamal_p_n, elgamal_s)
elgamal_homomorphic_a_b = (3, 3)
elgamal_homomorphic_c_1 = (3, 3)
elgamal_homomorphic_c_2 = (6, 3)
elgamal_homomorphic_m_1 = 6
# elgamal_calculations.keypair_generation(elgamal_p, elgamal_g, elgamal_d)
# elgamal_calculations.encryption(elgamal_public_key, elgamal_plaintext, elgamal_k)
# elgamal_calculations.decryption(elgamal_private_key, elgamal_ciphertext, print_matrix, print_linear_factorization)
# elgamal_calculations.sign(elgamal_public_key, elgamal_private_key, elgamal_plaintext, elgamal_r, print_matrix,
# print_linear_factorization)
# elgamal_calculations.verify(elgamal_public_key, elgamal_signed_message)
# elgamal_calculations.homomorphic_multiplicative_scheme(elgamal_public_key, elgamal_private_key,
# elgamal_homomorphic_c_1, elgamal_homomorphic_c_2,
# print_matrix, print_linear_factorization)
# elgamal_calculations.homomorphic_ciphertext_extension(elgamal_public_key, elgamal_private_key,
# elgamal_homomorphic_m_1, elgamal_homomorphic_a_b,
# print_matrix, print_linear_factorization)
# elgamal_calculations.homomorphic_multiplicative_decryption(elgamal_public_key, elgamal_private_key,
# elgamal_homomorphic_m_1, elgamal_homomorphic_c_1,
# elgamal_homomorphic_c_2, print_matrix,
# print_linear_factorization)
# elgamal_calculations.homomorphic_multiplicative_decryption_k(elgamal_public_key, elgamal_homomorphic_m_1,
# elgamal_homomorphic_c_1, elgamal_homomorphic_c_2,
# print_matrix, print_linear_factorization)
# elgamal_calculations.bsgs(elgamal_public_key, print_matrix, print_linear_factorization)
#########################################
# Fermat's factorization initial values #
#########################################
fermat_n = 33
# fermat_calculations.factorization(fermat_n)
#################################
# Elliptic curve initial values #
#################################
# y^2 = x^3 + ecc_a * x + ecc_b (mod ecc_n)
ecc_a = 1
ecc_b = 7
ecc_n = 17
ecc_curve = (ecc_a, ecc_b, ecc_n)
ecc_p = (2, 0)
ecc_q = (1, 3)
# ecc_calculations.on_curve(ecc_curve, ecc_p)
# ecc_calculations.addition(ecc_curve, ecc_p, ecc_q, print_matrix, print_linear_factorization)
####################################################
# Fiat-Shamir identification scheme initial values #
####################################################
fiat_shamir_p = 5
fiat_shamir_q = 3
fiat_shamir_n = fiat_shamir_p * fiat_shamir_q
fiat_shamir_s = 7 # Optional argument
fiat_shamir_v = 4 # Optional argument
fiat_shamir_public_key = (fiat_shamir_v, fiat_shamir_n)
fiat_shamir_private_key = (fiat_shamir_s, fiat_shamir_n)
fiat_shamir_k = 13 # Optional argument
fiat_shamir_b = 1 # Optional argument
fiat_shamir_y = 3 # Optional argument
# fiat_shamir_calculations.keypair_generation(fiat_shamir_p, fiat_shamir_q, fiat_shamir_s, fiat_shamir_v)
# fiat_shamir_calculations.verification(fiat_shamir_public_key, fiat_shamir_private_key, fiat_shamir_k,
# fiat_shamir_b, print_matrix, print_linear_factorization)
# fiat_shamir_calculations.attack_scheme(fiat_shamir_public_key, fiat_shamir_y, fiat_shamir_b, print_matrix,
# print_linear_factorization)