-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassignment7.html
255 lines (217 loc) · 8.48 KB
/
assignment7.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
<head>
<script src=g.js></script>
<script src=transformObj.js></script>
<script src=noise.js></script>
</head>
<body onload=g_start()>
<canvas id=myCanvas1 width=1000 height=640></canvas>
<script>
var w, h, g;
//plot curve on canvas
function plotCurve(C) {
g.beginPath();
for (var i = 0 ; i < C.length ; i++)
if (i == 0)
moveTo(C[i]);
else
lineTo(C[i]);
g.stroke();
}
// Viewport transform from 3D to 2D
function viewport(p) {
return [ w/2 * p[0] + w/2, h/2 - p[1] * w/2 ];
}
function moveTo(p) {
var q = m.transform(p); // APPLY 3D MATRIX TRANFORMATION
var xy = viewport(q); // APPLY VIEWPORT TRANSFORM
g.moveTo(xy[0], xy[1]);
}
function lineTo(p) {
var q = m.transform(p); // APPLY 3D MATRIX TRANFORMATION
var xy = viewport(q); // APPLY VIEWPORT TRANSFORM
g.lineTo(xy[0], xy[1]);
}
//Calculates point on sphere
function spherePoint(uv) {
var u = uv[0];
var v = uv[1];
var phi = -Math.PI/2 + Math.PI * v;
var theta = 2 * Math.PI * u;
return [ Math.cos(phi) * Math.cos(theta),
Math.cos(phi) * Math.sin(theta),
Math.sin(phi)];
}
//Calculates point on cylinder
function cylinderPoint(uv) {
var u = uv[0];
var v = uv[1];
var theta = 2 * Math.PI * u;
return [Math.cos(theta),
Math.sin(theta),
2 * v - 1];
}
//Calculates point on torus
function torusPoint(uv, r) {
if (r === undefined)
r = 0.2;
var theta = 2 * Math.PI * uv[0];
var phi = 2 * Math.PI * uv[1];
return [ (1 + r * Math.cos(phi)) * Math.cos(theta),
(1 + r * Math.cos(phi)) * Math.sin(theta),
r * Math.sin(phi) ];
}
function bspline(context, points) {
context.beginPath();
for (var t = 0; t < 1; t += 0.1) {
var ax = (-points[0].x + 3 * points[1].x - 3 * points[2].x + points[3].x) / 6;
var ay = (-points[0].y + 3 * points[1].y - 3 * points[2].y + points[3].y) / 6;
var bx = (-points[0].x - 2 * points[1].x + points[2].x) / 2;
var by = (-points[0].y - 2 * points[1].y + points[2].y) / 2;
var cx = (-points[0].x + points[2].x) / 2;
var cy = (-points[0].y + points[2].y) / 2;
var dx = (points[0].x + 4 * points[1].x + points[2].x) / 6;
var dy = (points[0].y + 4 * points[1].y + points[2].y) / 6;
context.moveTo(
ax*Math.pow(t,3) + bx*Math.pow(t,2) + cx*t + dx,
ay*Math.pow(t,3) + by*Math.pow(t,2) + cy*t + dy
);
context.lineTo(
ax*Math.pow(t+0.1, 3) + bx*Math.pow(t+0.1, 2) + cx*(t+0.1) + dx,
ay*Math.pow(t+0.1,3) + by*Math.pow(t+0.1,2) + cy*(t+0.1) + dy
);
//m.translate(ax * Math.pow(t + 0.1, 3) + bx * Math.pow(t + 0.1, 2) + cx * (t + 0.1) + dx, ay * Math.pow(t + 0.1, 3) + by * Math.pow(t + 0.1, 2) + cy * (t + 0.1) + dy,0);
}
context.stroke();
}
var interval;
function drawSpline(context, points, newpts) {
interval = setInterval(splineAnim(context, points, newpts), 160.67);
//console.log("interval set");
}
var t = 0;
function splineAnim(context, points, newpts) {
// Draw curve segment
var ax = (-points[0].x + 3 * points[1].x - 3 * points[2].x + points[3].x) / 6;
var ay = (-points[0].y + 3 * points[1].y - 3 * points[2].y + points[3].y) / 6;
var bx = (-points[0].x - 2 * points[1].x + points[2].x) / 2;
var by = (-points[0].y - 2 * points[1].y + points[2].y) / 2;
var cx = (-points[0].x + points[2].x) / 2;
var cy = (-points[0].y + points[2].y) / 2;
var dx = (points[0].x + 4 * points[1].x + points[2].x) / 6;
var dy = (points[0].y + 4 * points[1].y + points[2].y) / 6;
context.beginPath();
context.moveTo(
ax * Math.pow(t, 3) + bx * Math.pow(t, 2) + cx * t + dx,
ay * Math.pow(t, 3) + by * Math.pow(t, 2) + cy * t + dy
);
var ax2 = ax * Math.pow(t + 0.1, 3) + bx * Math.pow(t + 0.1, 2) + cx * (t + 0.1) + dx;
var ay2 = ay * Math.pow(t + 0.1, 3) + by * Math.pow(t + 0.1, 2) + cy * (t + 0.1) + dy;
context.lineTo(
ax * Math.pow(t + 0.1, 3) + bx * Math.pow(t + 0.1, 2) + cx * (t + 0.1) + dx,
ay * Math.pow(t + 0.1, 3) + by * Math.pow(t + 0.1, 2) + cy * (t + 0.1) + dy
);
context.stroke();
//m.translate(ax * Math.pow(t + 0.1, 3) + bx * Math.pow(t + 0.1, 2) + cx * (t + 0.1) + dx, ay * Math.pow(t + 0.1, 3) + by * Math.pow(t + 0.1, 2) + cy * (t + 0.1) + dy, 0);
//console.log("ax2: " + ax2 + ", ay2: " + ay2);
var arr = [ax2, ay2];
newpts.push(arr);
t += 0.02;
//Reached end of curve
if (t > 1) clearInterval(interval);
}
//# of mesh grid lines for parameters u and v
var num_u = 30 ;
var num_v = 25 ;
// Takes the parametric function as an argument and constructs 3D shape
function makeShape(num_u, num_v, eq, possRad) {
var shell = [];
for (var j = 0 ; j <= num_v ; j++) {
var v = j / num_v;
shell.push([]);
for (var i = 0 ; i <= num_u ; i++) {
var u = i / num_u;
var p = eq([u, v], possRad);
shell[j].push(p);
}
}
return shell;
}
// Used to create shapes to render parametric surface
function renderShape(shape) {
var num_j = shape.length;
var num_i = shape[0].length;
for (var j = 0 ; j < num_j - 1 ; j++)
for (var i = 0 ; i < num_i - 1 ; i++) {
plotCurve([shape[j][i],
shape[j + 1][i],
shape[j + 1][i + 1],
shape[j][i + 1]]);
}
}
myCanvas1.animate = function (_g) {
function cos(x) { return Math.cos(x); }
function sin(x) { return Math.sin(x); }
var cylinder = makeShape(num_u, num_v, cylinderPoint, 0.6);
var torus = makeShape(num_u, num_v, torusPoint, 0.3);
var sphere = makeShape(num_u, num_v, spherePoint, 0.5);
g = _g;
w = g.canvas.width;
h = g.canvas.height;
//canvas background
g.fillStyle = 'rgb(100,225,800)';
g.beginPath();
g.moveTo(0, 0);
g.lineTo(w, 0);
g.lineTo(w, h);
g.lineTo(0, h);
g.lineTo(0, 0);
g.fill();
// ANIMATE THE SCENE.
m.identity();
//m.rotateX(.5 * time);
//m.rotateY(time * .5);
//m.translate(sin(5 *time)* .2,cos(5 * time) * .4,.6)
//m.rotateZ(time * 5);
m.scale(.1, .1, .1);
g.strokeStyle = 'rgb(0,100,0)';
// m.translate(sin(time * 4), sin(time * 4) * cos(.2 * time), .7);
var points = new Array({ x: 80.9, y: 58.5 }, { x: 35.0, y: 89.6 }, { x: 74.7, y: 17.4 }, { x: 54.8, y: 25.4 });
//var points = new Array({ x: 0.1, y: 0.5 }, { x: 500, y: 400 }, { x: 1000, y: 401 }, { x: 10, y: 120 });
var points = new Array({ x: -0.025, y: 0.05 }, { x: 0.0, y: 0.03 }, { x: 0.025, y: 0.3 }, { x: 0.05, y: 0.07 });
var newPoints = [];
drawSpline(g, points, newPoints);
//bspline(g, points);
//m.translate(sin(time * newPoints[0][0]), cos(time * newPoints[0][1]), .7);
for (var i = 0; i < newPoints.length ; i++) {
m.translate(newPoints[i][0], newPoints[i][1], .7);
console.log("for loop called ");
}
renderShape(sphere);
m.identity();
for (var i = 0; i < newPoints.length ; i++) {
m.translate(newPoints[i][0], newPoints[i][1], .9);
}
m.scale(.1, .1, .1);
renderShape(torus);
//m.identity();
m.translate(.5, .4, .25);
m.rotateX(.8);
for (var i = 0; i < newPoints.length ; i++) {
m.translate(newPoints[i][0], newPoints[i][1], .25);
}
m.scale(.5, .5, .5);
renderShape(cylinder);
//m.identity();
//m.translate(2, .5, .6)
g.strokeStyle = 'rgb(0,0,100)';
//renderShape(cylinder);
m.identity();
//m.translate(sin(time *4), sin(time *4)* cos(.2 * time), .7)
//m.rotateX(.6 * time);
//m.rotateZ(time * .6);
//m.scale(.2, .2, .2);
g.strokeStyle = 'rgb(100,0,0)';
//renderShape(sphere);
}
</script>
</body>