Skip to content

Commit 66f5b85

Browse files
committed
Resize Project 13 eqns
1 parent efd34cf commit 66f5b85

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

Project#13/README.md

+6-6
Original file line numberDiff line numberDiff line change
@@ -29,18 +29,18 @@ from a well-chosen subspace of the full determinantal space.
2929

3030
Compute a representation of the Hamiltonian within the space of guess vectors,
3131

32-
<img src="./figures/guess-vector-hamiltonian.png" height="50">
32+
<img src="./figures/guess-vector-hamiltonian.png" height="25">
3333

3434
and then diagonalize this so-called "subspace Hamiltonian",
3535

36-
<img src="./figures/diag-subspace-hamiltonian.png" height="50">
36+
<img src="./figures/diag-subspace-hamiltonian.png" height="25">
3737

3838
where *M* is the number of roots of interest. The current estimate of each of
3939
the *M* eigenvectors we want is a linear combination of the guess vectors,
4040
with the &alpha;<sup>k</sup> subspace eigenvectors providing the
4141
coefficients, *viz.*
4242

43-
<img src="./figures/coefficients.png" height="50">
43+
<img src="./figures/coefficients.png" height="60">
4444

4545
The dimension of ***G*** is typically very small (perhaps a dozen times the
4646
number of guess vectors, *L*), so one can used a standard diagonalization
@@ -55,11 +55,11 @@ elements must be computed "on the fly" during the computation of each
5555

5656
Build a set of "correction vectors",
5757

58-
<img src="./figures/correction-vectors.png" height="50">
58+
<img src="./figures/correction-vectors.png" height="30">
5959

6060
where the "residual" vectors are defined as
6161

62-
<img src="./figures/residual-vectors.png" height="50">
62+
<img src="./figures/residual-vectors.png" height="60">
6363

6464
and *N* is the dimension of the Hamiltonian (i.e. the number of determinants).
6565
The inverse appearing in the definition of the correction vectors is commonly
@@ -106,7 +106,7 @@ dimension to something more manageable before continuing the Davidson-Liu
106106
algorithm. A typical choice is to collapse to the current best set of guesses
107107
using the equation given above for the current final eigenvectors:
108108

109-
<img src="./figures/final-eigenvectors.png" height="50">
109+
<img src="./figures/final-eigenvectors.png" height="60">
110110

111111
#### References
112112
- <b id="f1">1</b>: E.R. Davidson, "The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices," *J. Comput. Phys.* **17**, 87 (1975).[up](#r1)

0 commit comments

Comments
 (0)