Skip to content

Commit 80af470

Browse files
committed
Add Project 10 eqns
1 parent 060ca24 commit 80af470

File tree

5 files changed

+8
-45
lines changed

5 files changed

+8
-45
lines changed

Project#10/README.md

+8-45
Original file line numberDiff line numberDiff line change
@@ -12,77 +12,40 @@ zero as the equations converge. In the SCF procedure, we use the atomic-orbital
1212
representation of the occupied-virtual block of the Fock matrix. In the CC method, we
1313
could choose the difference between successive sets of cluster amplitudes:
1414

15-
```
16-
EQUATION
17-
{\mathbf e}_i = {\mathbf T}_{i+1} - {\mathbf T}_i,
18-
```
15+
<img src="./figures/error-vector.png" height="25">
1916

2017
where <b>T</b><sub>i</sub> represents a vector containing all the cluster amplitudes for the *i*-th iteration.
2118

2219
There are three important points to note about this choice of error vector:
2320
* Defining the error vectors as differences between successive sets of amplitudes
2421
implies that one cannot begin the DIIS extrapolation until at least three
2522
iterations are complete.
26-
* Just as in the SCF DIIS procedure, error vectors should only be computed using *
27-
**non-extrapolated** * sets of cluster amplitudes.
23+
* Just as in the SCF DIIS procedure, error vectors should only be computed using
24+
<b><i>non-extrapolated</i></b> sets of cluster amplitudes.
2825
* The set of cluster amplitudes can require substantial memory for larger
2926
molecules; hence, the choice of the number of error vectors used in the CC DIIS
3027
procedure is potentially dependent on the available storage (disk and memory).
3128

3229
## Extrapolation
3330
Given the above definition of the error vectors, the set of linear equations to be solved is the same as that for the SCF DIIS procedure:
3431

35-
```
36-
EQUATION
37-
\left(
38-
\begin{array}{ccccc}
39-
B_{11} & B_{12} & \ldots & B_{1m} & -1 \\
40-
B_{21} & B_{22} & \ldots & B_{2m} & -1 \\
41-
\ldots & \ldots & \ldots & \ldots & -1 \\
42-
B_{m1} & B_{m2} & \ldots & B_{mm} & -1 \\
43-
-1 & -1 & \ldots & -1 & 0 \\
44-
\end{array}
45-
\right) \left(
46-
\begin{array}{c}
47-
c_1 \\
48-
c_2 \\
49-
\ldots \\
50-
c_m \\
51-
\lambda
52-
\end{array}
53-
\right) = \left(
54-
\begin{array}{c}
55-
0 \\
56-
0 \\
57-
\ldots \\
58-
0 \\
59-
-1 \\
60-
\end{array}
61-
\right),
62-
```
32+
<img src="./figures/sys-lin-eqn-ci.png" height="125">
6333

64-
where lambda is a Lagrangian multiplier and the elements <i>B<sub>ij</sub></i> are computed as dot products of error matrices:
34+
where &lambda; is a Lagrangian multiplier and the elements <i>B<sub>ij</sub></i> are computed as dot products of error matrices:
6535

66-
```
67-
EQUATION
68-
B_{ij} \equiv {\mathbf e}_i \cdot {\mathbf e}_j.
69-
```
36+
<img src="./figures/Bij.png" height="25">
7037

7138
A new set of cluster amplitudes is then obtained as a linear combinations of older amplitudes using the coefficients from the linear equations above:
7239

73-
```
74-
EQUATION
75-
{\mathbf T}_{\rm new} = \sum_i c_i {\mathbf T}_i
76-
```
40+
<img src="./figures/new-t-amps.png" height="25">
7741

7842
Again: The extrapolated cluster amplitudes should be used only in the CC amplitude equations, not to compute subsequent error vectors.
7943

8044
## Results
8145
Once the procedure is working, you should observe a considerable reduction in the
8246
number of iterations required to converge the CC amplitude equations to a given
8347
tolerance. For example, without DIIS extrapolation, the STO-3G H<sub>2</sub>O test
84-
case from [Project #5](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2305)
85-
converges in 38 iterations to a
48+
case from [Project #5](../Project%2305) converges in 38 iterations to a
8649
precision of 10<sup>-12</sup>:
8750

8851
```

Project#10/figures/Bij.png

3.66 KB
Loading

Project#10/figures/error-vector.png

3.57 KB
Loading

Project#10/figures/new-t-amps.png

4.69 KB
Loading

Project#10/figures/sys-lin-eqn-ci.png

21.5 KB
Loading

0 commit comments

Comments
 (0)