Skip to content

Commit 9478d73

Browse files
committed
Resize Project 11 eqns
1 parent 6d0bc92 commit 9478d73

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

Project#11/README.md

+6-6
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ iteration rather than stored on disk.))
3434

3535
At the heart of the SCF procedure is the expensive Fock-matrix term:
3636

37-
<img src="./figures/fock-matrix.png" height="50">
37+
<img src="./figures/fock-matrix.png" height="75">
3838

3939
where we use *i*, *j*, *k*, and *l* to denote AO-basis indices. As described
4040
in [Project #3](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2303), a simple algorithm for
@@ -116,22 +116,22 @@ each individual integral to the Fock matrix:
116116
117117
Thus a given integral, (ij|kl), would contribute to <b><i>at least two</i></b> Fock matrix elements as:
118118
119-
<img src="./figures/fock-contribution-1.png" height="25">
119+
<img src="./figures/fock-contribution-1.png" height="20">
120120
121121
and
122122
123-
<img src="./figures/fock-contribution-2.png" height="25">
123+
<img src="./figures/fock-contribution-2.png" height="20">
124124
125125
## Handling Permutational Symmetry
126126
127127
The most difficult aspect of the out-of-core algorithm is the fact that file contains only the permutationally unique integrals,
128128
*(ij|kl)*, such that:
129129
130-
<img src="./figures/index-restrictions.png" height="25">
130+
<img src="./figures/index-restrictions.png" height="20">
131131
132132
where
133133
134-
<img src="./figures/compound-indices.png" height="25">
134+
<img src="./figures/compound-indices.png" height="20">
135135
136136
Thus, when determining the contribution of a given integral to various elements
137137
of the Fock matrix, one must consider all possible unique permutations of the
@@ -140,7 +140,7 @@ indices can limit the number of possibilities. For example, if one encountered
140140
the integral *(22|11)*, it would contribute to a total of <b><i>four</i></b> Fock
141141
matrix elements, viz.
142142
143-
<img src="./figures/fock-contribution-3.png" height="25">
143+
<img src="./figures/fock-contribution-3.png" height="20">
144144
145145
All such cases must be included in the algorithm to obtain a correct Fock matrix.
146146

0 commit comments

Comments
 (0)