Skip to content

Commit b910d1a

Browse files
committed
Embed Project 2 equations
1 parent 21cebef commit b910d1a

8 files changed

+6
-26
lines changed

Project#02/.DS_Store

6 KB
Binary file not shown.

Project#02/README.md

+6-26
Original file line numberDiff line numberDiff line change
@@ -14,39 +14,22 @@ for the remainder of this project is the water molecule, optimized at the SCF/DZ
1414
The primary input data for the harmonic vibrational calculation is the Hessian matrix,
1515
which consists of second derivatives of the energy with respect to atomic positions.
1616

17-
```
18-
EQUATION
19-
F_{ij} = \frac{\partial^{2}V}{\partial q_i \partial q_j}
20-
```
17+
<img src="./figures/hessian.png" height="40">
18+
2119
The Hessian matrix (in units of E<sub>h</sub>/a<sub>0</sub><sup>2</sup>) can be downloaded [here](./input/h2o_hessian.txt) for the H<sub>2</sub>O test case.
2220
The first integer in the file is the number of atoms (which you should compare to the corresponding value from the geometry file as a test of consistency),
2321
while the remaining values have the following format:
2422

25-
```
26-
EQUATION
27-
\begin{array}{ccc}
28-
F_{x_1,x_1} & F_{x_1,y_1} & F_{x_1,z_1} \\
29-
F_{x_1,x_2} & F_{x_1,y_2} & F_{x_1,z_2} \\
30-
& \\
31-
\ldots & \ldots & \dots \\
32-
& \\
33-
F_{x_2,x_1} & F_{x_2,y_1} & F_{x_2,z_1} \\
34-
& \\
35-
\ldots & \ldots & \ldots \\
36-
\end{array}
37-
```
23+
<img src="./figures/hessian-file-format.png" width="100">
3824

3925
* [Hint 1](./hints/hint1.md): Reading the Hessian
4026

4127
## Step 3: Mass-Weight the Hessian Matrix
4228

4329
Divide each element of the Hessian matrix by the product of square-roots of the masses of the atoms associated with the given coordinates:
4430

45-
```
46-
EQUATION
47-
F^{M}_{ij} = \frac{F_{ij}}{\sqrt{m_i m_j}}
31+
<img src="./figures/mass-weighted-hessian.png" height="40">
4832

49-
```
5033
where m<sub>i</sub> represents the mass of the atom corresponding to atom *i*. Use atomic mass units (amu) for the masses, just as
5134
for [Project #1](../Project%2301).
5235

@@ -56,11 +39,7 @@ for [Project #1](../Project%2301).
5639

5740
Compute the eigenvalues of the mass-weighted Hessian:
5841

59-
```
60-
EQUATION
61-
62-
F^{M}\mathbf{L} = \mathbf{L}\Lambda
63-
```
42+
<img src="./figures/diag-mass-weighted-hessian.png" height="40">
6443

6544
You should consider using the same canned diagonalization function
6645
you used in [Project #1](../Project%2301).
@@ -71,6 +50,7 @@ you used in [Project #1](../Project%2301).
7150

7251
The vibrational frequencies are proportional to the squareroot of the eigenvalues of the mass-weighted Hessian:
7352

53+
<img src="./figures/vib-freq.png" height="40">
7454
```
7555
EQUATION
7656
\omega_{i}= {\rm_constant} \times \sqrt{\lambda_i}

Project#02/figures/.DS_Store

6 KB
Binary file not shown.
Loading
9.89 KB
Loading

Project#02/figures/hessian.png

5.38 KB
Loading
5.68 KB
Loading

Project#02/figures/vib-freq.png

5.36 KB
Loading

0 commit comments

Comments
 (0)