forked from pymc-labs/CausalPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression_kink.py
239 lines (209 loc) · 8.48 KB
/
regression_kink.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright 2022 - 2025 The PyMC Labs Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Regression kink design
"""
import warnings # noqa: I001
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from patsy import build_design_matrices, dmatrices
from causalpy.plot_utils import plot_xY
from .base import BaseExperiment
from causalpy.utils import round_num
from causalpy.custom_exceptions import (
DataException,
FormulaException,
)
from causalpy.utils import _is_variable_dummy_coded
LEGEND_FONT_SIZE = 12
class RegressionKink(BaseExperiment):
"""Regression Kink experiment class."""
supports_ols = False
supports_bayes = True
def __init__(
self,
data: pd.DataFrame,
formula: str,
kink_point: float,
model=None,
running_variable_name: str = "x",
epsilon: float = 0.001,
bandwidth: float = np.inf,
**kwargs,
):
super().__init__(model=model)
self.expt_type = "Regression Kink"
self.data = data
self.formula = formula
self.running_variable_name = running_variable_name
self.kink_point = kink_point
self.epsilon = epsilon
self.bandwidth = bandwidth
self.input_validation()
if self.bandwidth is not np.inf:
fmin = self.kink_point - self.bandwidth
fmax = self.kink_point + self.bandwidth
filtered_data = self.data.query(f"{fmin} <= x <= {fmax}")
if len(filtered_data) <= 10:
warnings.warn(
f"Choice of bandwidth parameter has lead to only {len(filtered_data)} remaining datapoints. Consider increasing the bandwidth parameter.", # noqa: E501
UserWarning,
)
y, X = dmatrices(formula, filtered_data)
else:
y, X = dmatrices(formula, self.data)
self._y_design_info = y.design_info
self._x_design_info = X.design_info
self.labels = X.design_info.column_names
self.y, self.X = np.asarray(y), np.asarray(X)
self.outcome_variable_name = y.design_info.column_names[0]
COORDS = {"coeffs": self.labels, "obs_indx": np.arange(self.X.shape[0])}
self.model.fit(X=self.X, y=self.y, coords=COORDS)
# score the goodness of fit to all data
self.score = self.model.score(X=self.X, y=self.y)
# get the model predictions of the observed data
if self.bandwidth is not np.inf:
xi = np.linspace(fmin, fmax, 200)
else:
xi = np.linspace(
np.min(self.data[self.running_variable_name]),
np.max(self.data[self.running_variable_name]),
200,
)
self.x_pred = pd.DataFrame(
{self.running_variable_name: xi, "treated": self._is_treated(xi)}
)
(new_x,) = build_design_matrices([self._x_design_info], self.x_pred)
self.pred = self.model.predict(X=np.asarray(new_x))
# evaluate gradient change around kink point
mu_kink_left, mu_kink, mu_kink_right = self._probe_kink_point()
self.gradient_change = self._eval_gradient_change(
mu_kink_left, mu_kink, mu_kink_right, epsilon
)
def input_validation(self):
"""Validate the input data and model formula for correctness"""
if "treated" not in self.formula:
raise FormulaException(
"A predictor called `treated` should be in the formula"
)
if _is_variable_dummy_coded(self.data["treated"]) is False:
raise DataException(
"""The treated variable should be dummy coded. Consisting of 0's and 1's only.""" # noqa: E501
)
if self.bandwidth <= 0:
raise ValueError("The bandwidth must be greater than zero.")
if self.epsilon <= 0:
raise ValueError("Epsilon must be greater than zero.")
@staticmethod
def _eval_gradient_change(mu_kink_left, mu_kink, mu_kink_right, epsilon):
"""Evaluate the gradient change at the kink point.
It works by evaluating the model below the kink point, at the kink point,
and above the kink point.
This is a static method for ease of testing.
"""
gradient_left = (mu_kink - mu_kink_left) / epsilon
gradient_right = (mu_kink_right - mu_kink) / epsilon
gradient_change = gradient_right - gradient_left
return gradient_change
def _probe_kink_point(self):
"""Probe the kink point to evaluate the predicted outcome at the kink point and
either side."""
# Create a dataframe to evaluate predicted outcome at the kink point and either
# side
x_predict = pd.DataFrame(
{
self.running_variable_name: np.array(
[
self.kink_point - self.epsilon,
self.kink_point,
self.kink_point + self.epsilon,
]
),
"treated": np.array([0, 1, 1]),
}
)
(new_x,) = build_design_matrices([self._x_design_info], x_predict)
predicted = self.model.predict(X=np.asarray(new_x))
# extract predicted mu values
mu_kink_left = predicted["posterior_predictive"].sel(obs_ind=0)["mu"]
mu_kink = predicted["posterior_predictive"].sel(obs_ind=1)["mu"]
mu_kink_right = predicted["posterior_predictive"].sel(obs_ind=2)["mu"]
return mu_kink_left, mu_kink, mu_kink_right
def _is_treated(self, x):
"""Returns ``True`` if `x` is greater than or equal to the treatment threshold.""" # noqa: E501
return np.greater_equal(x, self.kink_point)
def summary(self, round_to=None) -> None:
"""Print summary of main results and model coefficients.
:param round_to:
Number of decimals used to round results. Defaults to 2. Use "None" to return raw numbers
"""
print(
f"""
{self.expt_type:=^80}
Formula: {self.formula}
Running variable: {self.running_variable_name}
Kink point on running variable: {self.kink_point}
Results:
Change in slope at kink point = {round_num(self.gradient_change.mean(), round_to)}
"""
)
self.print_coefficients(round_to)
def _bayesian_plot(self, round_to=None, **kwargs) -> tuple[plt.Figure, plt.Axes]:
"""Generate plot for regression kink designs."""
fig, ax = plt.subplots()
# Plot raw data
sns.scatterplot(
self.data,
x=self.running_variable_name,
y=self.outcome_variable_name,
c="k", # hue="treated",
ax=ax,
)
# Plot model fit to data
h_line, h_patch = plot_xY(
self.x_pred[self.running_variable_name],
self.pred["posterior_predictive"].mu,
ax=ax,
plot_hdi_kwargs={"color": "C1"},
)
handles = [(h_line, h_patch)]
labels = ["Posterior mean"]
# create strings to compose title
title_info = f"{round_num(self.score.r2, round_to)} (std = {round_num(self.score.r2_std, round_to)})"
r2 = f"Bayesian $R^2$ on all data = {title_info}"
percentiles = self.gradient_change.quantile([0.03, 1 - 0.03]).values
ci = (
r"$CI_{94\%}$"
+ f"[{round_num(percentiles[0], round_to)}, {round_num(percentiles[1], round_to)}]"
)
grad_change = f"""
Change in gradient = {round_num(self.gradient_change.mean(), round_to)},
"""
ax.set(title=r2 + "\n" + grad_change + ci)
# Intervention line
ax.axvline(
x=self.kink_point,
ls="-",
lw=3,
color="r",
label="treatment threshold",
)
ax.legend(
handles=(h_tuple for h_tuple in handles),
labels=labels,
fontsize=LEGEND_FONT_SIZE,
)
return fig, ax