-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample.py
83 lines (52 loc) · 2.79 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
This is an example using semi - supervised K - Means and semi - supervised Kernel K - Means
"""
import numpy as np
from sklearn.datasets import load_iris, load_breast_cancer
from sklearn.metrics import adjusted_mutual_info_score
from kmeans import KMeans
from kernelkmeans import KernelKMeans
import os
def main():
# Load data
iris_data = load_iris()['data']
iris_labels = load_iris()['target']
cancer_data = load_breast_cancer()['data']
cancer_labels = load_breast_cancer()['target']
print "\n\n"
##################################################
# Unsupervised and semi - supervised K - Means #
##################################################
# Give 20 data points from clusters 0 and 2
n = 20
iris_known_data = np.array([ np.random.choice(np.where(iris_labels==0)[0], n), [], np.random.choice(np.where(iris_labels==2)[0], n) ])
print_title("IRIS Dataset - Unsupervised K - Means")
kmeans = KMeans(k=3, verbose=True)
kmeans_results = kmeans.fit_predict(iris_data)
print "\nScore:\t{}\n\n".format(adjusted_mutual_info_score(iris_labels, kmeans_results))
print_title("IRIS Dataset - Semi - Supervised K - Means")
kmeans_semi = KMeans(k=3, known_data=iris_known_data, alpha=0.7, verbose=True)
kmeans_semi_results = kmeans_semi.fit_predict(iris_data)
print "\nScore:\t{}\n\n".format(adjusted_mutual_info_score(iris_labels, kmeans_semi_results))
#########################################################
# Unsupervised and semi - supervised Kernel K - Means #
#########################################################
# Give 30 data points from clusters 0 and 2
n = 50
cancer_known_data = np.array([ np.random.choice(np.where(cancer_labels==0)[0], n), np.random.choice(np.where(cancer_labels==1)[0], n)])
print_title("Breast Cancer Dataset - Unupervised K - Means")
kernel_k_means = KernelKMeans(k=2, kernel='polynomial', deg=0.1, coef0=0, verbose=True)
kernel_k_means_results = kernel_k_means.fit_predict(cancer_data)
print "\nScore:\t{}\n\n".format(adjusted_mutual_info_score(cancer_labels, kernel_k_means_results))
print_title("Breast Cancer Dataset - Semi - Supervised K - Means")
kernel_k_means_semi = KernelKMeans(k=2, kernel='polynomial', deg=0.1, coef0=0, alpha=0.7, known_data=cancer_known_data, verbose=True)
kernel_k_means_semi_results = kernel_k_means_semi.fit_predict(cancer_data)
print "\nScore:\t{}\n\n\n".format(adjusted_mutual_info_score(cancer_labels, kernel_k_means_semi_results))
def print_title(title):
width = int(os.popen('stty size','r').read().split()[1])
spaces = (((width-3)-len(title))/2)-1
print '-'*(width-1)
print '||'+' '*spaces,title+' '*spaces+"||"
print '-'*(width-1)
if __name__ == '__main__':
main()