-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathconvnext_v2.py
54 lines (42 loc) · 1.39 KB
/
convnext_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from __future__ import annotations
import mlx.core as mx
import mlx.nn as nn
# global response normalization
class GRN(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = mx.zeros((1, 1, dim))
self.beta = mx.zeros((1, 1, dim))
def __call__(self, x):
Gx = mx.linalg.norm(x, ord=2, axis=1, keepdims=True)
Nx = Gx / (Gx.mean(axis=-1, keepdims=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
# ConvNeXt-v2 block
class ConvNeXtV2Block(nn.Module):
def __init__(
self,
dim: int,
intermediate_dim: int,
dilation: int = 1,
):
super().__init__()
padding = (dilation * (7 - 1)) // 2
# depthwise conv
self.dwconv = nn.Conv1d(
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
)
self.norm = nn.LayerNorm(dim, eps=1e-6)
# pointwise convs, implemented with linear layers
self.pwconv1 = nn.Linear(dim, intermediate_dim)
self.act = nn.GELU()
self.grn = GRN(intermediate_dim)
self.pwconv2 = nn.Linear(intermediate_dim, dim)
def __call__(self, x: mx.array) -> mx.array:
residual = x
x = self.dwconv(x)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
return residual + x