-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathdit.py
401 lines (300 loc) · 12.1 KB
/
dit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
import math
import mlx.core as mx
import mlx.nn as nn
from einops.array_api import repeat, rearrange
from f5_tts_mlx.convnext_v2 import ConvNeXtV2Block
from f5_tts_mlx.rope import (
RotaryEmbedding,
apply_rotary_pos_emb,
get_pos_embed_indices,
precompute_freqs_cis,
)
# convolutional position embedding
class ConvPositionEmbedding(nn.Module):
def __init__(self, dim, kernel_size=31, groups=16):
super().__init__()
assert kernel_size % 2 != 0
self.conv1d = nn.Sequential(
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
nn.Mish(),
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
nn.Mish(),
)
def __call__(self, x: mx.array, mask: mx.array | None = None) -> mx.array:
if mask is not None:
mask = mask[..., None]
x = x * mask
out = self.conv1d(x)
if mask is not None:
out = out * mask
return out
# sinusoidal position embedding
class SinusPositionEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def __call__(self, x, scale=1000):
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = mx.exp(mx.arange(half_dim) * -emb)
emb = scale * mx.expand_dims(x, axis=1) * mx.expand_dims(emb, axis=0)
emb = mx.concatenate([emb.sin(), emb.cos()], axis=-1)
return emb
# time step conditioning embedding
class TimestepEmbedding(nn.Module):
def __init__(self, dim, freq_embed_dim=256):
super().__init__()
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
def __call__(self, timestep: mx.array) -> mx.array:
time_hidden = self.time_embed(timestep)
time = self.time_mlp(time_hidden)
return time
# feed forward
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
activation = nn.GELU(approx=approximate)
project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
def __call__(self, x: mx.array) -> mx.array:
return self.ff(x)
# attention
class Attention(nn.Module):
def __init__(
self,
dim: int,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
):
super().__init__()
self.dim = dim
self.heads = heads
self.inner_dim = dim_head * heads
self.dropout = dropout
self.to_q = nn.Linear(dim, self.inner_dim)
self.to_k = nn.Linear(dim, self.inner_dim)
self.to_v = nn.Linear(dim, self.inner_dim)
self._scale_factor = 1 / mx.sqrt(dim_head)
self.to_out = nn.Sequential(nn.Linear(self.inner_dim, dim), nn.Dropout(dropout))
def __call__(
self,
x: mx.array,
mask: mx.array | None = None,
rope: mx.array | None = None,
) -> mx.array:
batch, seq_len, _ = x.shape
# `sample` projections.
query = self.to_q(x)
key = self.to_k(x)
value = self.to_v(x)
# attention
query = query.reshape(batch, seq_len, self.heads, -1).transpose(0, 2, 1, 3)
key = key.reshape(batch, seq_len, self.heads, -1).transpose(0, 2, 1, 3)
value = value.reshape(batch, seq_len, self.heads, -1).transpose(0, 2, 1, 3)
# apply rotary position embedding
if rope is not None:
freqs, xpos_scale = rope
q_xpos_scale, k_xpos_scale = (
(
xpos_scale,
xpos_scale**-1.0,
)
if xpos_scale is not None
else (1.0, 1.0)
)
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
# mask. e.g. inference got a batch with different target durations, mask out the padding
if mask is not None:
attn_mask = mask[:, None, None, :].expand(batch, self.heads, 1, seq_len)
else:
attn_mask = None
x = mx.fast.scaled_dot_product_attention(q=query, k=key, v=value, scale=self._scale_factor, mask=attn_mask)
x = x.transpose(0, 2, 1, 3).reshape(batch, seq_len, -1).astype(query.dtype)
# linear proj
x = self.to_out(x)
if attn_mask is not None:
x = x * mask[:, :, None]
return x
# Text embedding
class TextEmbedding(nn.Module):
def __init__(self, text_num_embeds, text_dim, mask_padding=True, conv_layers=0, conv_mult=2):
super().__init__()
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
self.mask_padding = mask_padding # mask filler and batch padding tokens or not
if conv_layers > 0:
self.extra_modeling = True
self.precompute_max_pos = 4096 # ~44s of 24khz audio
self._freqs_cis = precompute_freqs_cis(text_dim, self.precompute_max_pos)
self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)])
else:
self.extra_modeling = False
def __call__(self, text, seq_len, drop_text=False):
batch, text_len = text.shape[0], text.shape[1]
# use 0 as filler token. we rely on text being padded with -1 values.
text = text + 1
# curtail if character tokens are more than the mel spec tokens
text = text[:, :seq_len]
text = mx.pad(text, [(0, 0), (0, seq_len - text_len)], constant_values=0)
if self.mask_padding:
text_mask = rearrange(text == 0, "b n -> b n 1")
# cfg for text
text = mx.where(drop_text, mx.zeros_like(text), text)
text = self.text_embed(text) # b n -> b n d
if self.extra_modeling:
# sinus pos emb
batch_start = mx.zeros((batch,), dtype=mx.int32)
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
text_pos_embed = self._freqs_cis[pos_idx]
text = text + text_pos_embed
# convnext v2 blocks
if self.mask_padding:
text = mx.where(text_mask, mx.zeros_like(text), text)
for block in self.text_blocks.layers:
text = block(text)
text = mx.where(text_mask, mx.zeros_like(text), text)
else:
text = self.text_blocks(text)
return text
# noised input audio and context mixing embedding
class InputEmbedding(nn.Module):
def __init__(self, mel_dim, text_dim, out_dim):
super().__init__()
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
def __call__(
self,
x: mx.array, # b n d
cond: mx.array, # b n d
text_embed: mx.array, # b n d
drop_audio_cond=False,
):
# cfg for cond audio
cond = mx.where(drop_audio_cond, mx.zeros_like(cond), cond)
x = self.proj(mx.concatenate((x, cond, text_embed), axis=-1))
x = self.conv_pos_embed(x) + x
return x
# AdaLayerNormZero
# return with modulated x for attn input, and params for later mlp modulation
class AdaLayerNormZero(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 6)
self.norm = nn.LayerNorm(dim, affine=False, eps=1e-6)
def __call__(self, x: mx.array, emb: mx.array | None = None) -> mx.array:
emb = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mx.split(emb, 6, axis=1)
x = self.norm(x) * (1 + mx.expand_dims(scale_msa, axis=1)) + mx.expand_dims(shift_msa, axis=1)
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
# AdaLayerNormZero for final layer
# return only with modulated x for attn input, cuz no more mlp modulation
class AdaLayerNormZero_Final(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 2)
self.norm = nn.LayerNorm(dim, affine=False, eps=1e-6)
def __call__(self, x: mx.array, emb: mx.array | None = None) -> mx.array:
emb = self.linear(self.silu(emb))
scale, shift = mx.split(emb, 2, axis=1)
x = self.norm(x) * (1 + mx.expand_dims(scale, axis=1)) + mx.expand_dims(shift, axis=1)
return x
# DiT block
class DiTBlock(nn.Module):
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.0):
super().__init__()
self.attn_norm = AdaLayerNormZero(dim)
self.attn = Attention(
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
)
self.ff_norm = nn.LayerNorm(dim, affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
def __call__(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
# pre-norm & modulation for attention input
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
# attention
attn_output = self.attn(x=norm, mask=mask, rope=rope)
# process attention output for input x
x = x + mx.expand_dims(gate_msa, axis=1) * attn_output
norm = self.ff_norm(x) * (1 + mx.expand_dims(scale_mlp, axis=1)) + mx.expand_dims(shift_mlp, axis=1)
ff_output = self.ff(norm)
x = x + mx.expand_dims(gate_mlp, axis=1) * ff_output
return x
# Transformer backbone using DiT blocks
class DiT(nn.Module):
def __init__(
self,
*,
dim,
depth=8,
heads=8,
dim_head=64,
dropout=0.0,
ff_mult=4,
mel_dim=100,
text_num_embeds=256,
text_dim=None,
text_mask_padding=True,
conv_layers=0,
):
super().__init__()
if text_dim is None:
text_dim = mel_dim
self.time_embed = TimestepEmbedding(dim)
self.text_embed = TextEmbedding(text_num_embeds, text_dim, mask_padding=text_mask_padding, conv_layers=conv_layers)
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
self.rotary_embed = RotaryEmbedding(dim_head)
self.dim = dim
self.depth = depth
self.transformer_blocks = [
DiTBlock(
dim=dim,
heads=heads,
dim_head=dim_head,
ff_mult=ff_mult,
dropout=dropout,
)
for _ in range(depth)
]
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
self.proj_out = nn.Linear(dim, mel_dim)
def __call__(
self,
x: mx.array, # b n d, nosied input audio
cond: mx.array, # b n d, masked cond audio
text: mx.array, # b nt, text
time: mx.array, # b, time step
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: mx.array | None = None, # b n
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = repeat(time, " -> b", b=batch)
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
rope = self.rotary_embed.forward_from_seq_len(seq_len)
for block in self.transformer_blocks:
x = block(x, t, mask=mask, rope=rope)
x = self.norm_out(x, t)
output = self.proj_out(x)
return output