-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathutils.py
192 lines (140 loc) · 5.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
from pathlib import Path
from typing import Optional
import mlx.core as mx
from einops.array_api import reduce
import einx
from huggingface_hub import snapshot_download
import jieba
from pypinyin import lazy_pinyin, Style
jieba.setLogLevel(20)
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
def divisible_by(num, den):
return (num % den) == 0
def lens_to_mask(
t: mx.array,
length: int | None = None,
) -> mx.array: # Bool['b n']
if not exists(length):
length = t.max().item()
seq = mx.arange(length)
return einx.less("n, b -> b n", seq, t)
def mask_from_start_end_indices(
seq_len: mx.array,
start: mx.array,
end: mx.array,
max_length: int | None = None,
):
max_seq_len = max_length # default(max_length, seq_len.max().item())
seq = mx.arange(max_seq_len).astype(mx.int32)
return einx.greater_equal("n, b -> b n", seq, start) & einx.less("n, b -> b n", seq, end)
def mask_from_frac_lengths(
seq_len: mx.array,
frac_lengths: mx.array,
max_length: int | None = None,
):
lengths = (frac_lengths * seq_len).astype(mx.int32)
max_start = seq_len - lengths
rand = mx.random.uniform(0, 1, frac_lengths.shape)
start = mx.maximum((max_start * rand).astype(mx.int32), 0)
end = start + lengths
out = mask_from_start_end_indices(seq_len, start, end, max_length)
if exists(max_length):
out = pad_to_length(out, max_length)
return out
def maybe_masked_mean(t: mx.array, mask: mx.array | None = None) -> mx.array:
if not exists(mask):
return t.mean(dim=1)
t = einx.where("b n, b n d, -> b n d", mask, t, 0.0)
num = reduce(t, "b n d -> b d", "sum")
den = reduce(mask.astype(mx.int32), "b n -> b", "sum")
return einx.divide("b d, b -> b d", num, mx.maximum(den, 1))
def pad_to_length(t: mx.array, length: int, value=0):
ndim = t.ndim
seq_len = t.shape[-1]
if length > seq_len:
if ndim == 1:
t = mx.pad(t, [(0, length - seq_len)], constant_values=value)
elif ndim == 2:
t = mx.pad(t, [(0, 0), (0, length - seq_len)], constant_values=value)
else:
raise ValueError(f"Unsupported padding dims: {ndim}")
return t[..., :length]
def pad_sequence(t: mx.array, padding_value=0):
max_len = max([i.shape[-1] for i in t])
t = mx.array([pad_to_length(i, max_len, padding_value) for i in t])
return t
# simple utf-8 tokenizer, since paper went character based
def list_str_to_tensor(text: list[str], padding_value=-1) -> mx.array: # Int['b nt']:
list_tensors = [mx.array([*bytes(t, "UTF-8")]) for t in text]
padded_tensor = pad_sequence(list_tensors, padding_value=-1)
return padded_tensor
# char tokenizer, based on custom dataset's extracted .txt file
def list_str_to_idx(
text: list[str],
vocab_char_map: dict[str, int], # {char: idx}
padding_value=-1,
) -> mx.array: # Int['b nt']:
list_idx_tensors = [[vocab_char_map.get(c, 0) for c in t] for t in text] # pinyin or char style
list_idx_tensors = [mx.array(t) for t in list_idx_tensors]
text = pad_sequence(list_idx_tensors, padding_value=padding_value)
return text
# convert char to pinyin
def convert_char_to_pinyin(text_list, polyphone=True):
final_text_list = []
god_knows_why_en_testset_contains_zh_quote = str.maketrans(
{"“": '"', "”": '"', "‘": "'", "’": "'"}
) # in case librispeech (orig no-pc) test-clean
custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov
for text in text_list:
char_list = []
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
text = text.translate(custom_trans)
for seg in jieba.cut(text):
seg_byte_len = len(bytes(seg, "UTF-8"))
if seg_byte_len == len(seg): # if pure alphabets and symbols
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
char_list.append(" ")
char_list.extend(seg)
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
for c in seg:
if c not in "。,、;:?!《》【】—…":
char_list.append(" ")
char_list.append(c)
else: # if mixed chinese characters, alphabets and symbols
for c in seg:
if ord(c) < 256:
char_list.extend(c)
else:
if c not in "。,、;:?!《》【】—…":
char_list.append(" ")
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
else: # if is zh punc
char_list.append(c)
final_text_list.append(char_list)
return final_text_list
# fetch model from hub
def fetch_from_hub(hf_repo: str, quantization_bits: Optional[int] = None) -> Path:
model_filename = "model_v1.safetensors"
if exists(quantization_bits):
model_filename = f"model_v1_{quantization_bits}b.safetensors"
duration_predictor_path = "duration_v2.safetensors"
model_path = Path(
snapshot_download(
repo_id=hf_repo,
allow_patterns=[model_filename, duration_predictor_path, "*.txt"],
)
)
return model_path