-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmutex.py
1694 lines (1224 loc) · 63.8 KB
/
mutex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
__author__ = 'jlu96'
import matplotlib.pyplot as plt
import scipy.stats as stats
import sys
import operator
import itertools
import time
import mutexprob as mep
import scorecooccur as sco
import numpy as np
import collections
import functools
from scipy.misc import comb
import csv
import bingenesbypairs as bgbp
def graph_mutation_distribution(numCases, genes, geneToCases, filename, top_percentile=10, zoomin_percentile=None, bins=100):
mutationfrequencies = [len(geneToCases[gene]) for gene in genes]
plt.figure()
plt.hist(mutationfrequencies, bins)
percentile_score = stats.scoreatpercentile(mutationfrequencies, 100 - top_percentile)
plt.axvline(percentile_score, color='k', linestyle='dashed', linewidth=2,
label='Top ' + str(top_percentile) + ' % at ' + str(percentile_score))
plt.title(filename, fontsize=20)
plt.xlabel('Gene Mutation Number', fontsize=20)
plt.ylabel('Genes', fontsize=20)
plt.legend()
plt.show()
if zoomin_percentile:
print "Zoomed into bottom " + str(zoomin_percentile) + " percent region"
zoomin_percentile_score = stats.scoreatpercentile(mutationfrequencies, zoomin_percentile)
zoomin_mutationfrequencies = [m for m in mutationfrequencies if m <= zoomin_percentile_score]
plt.figure()
plt.hist(zoomin_mutationfrequencies)
plt.axvline(percentile_score, color='k', linestyle='dashed', linewidth=2,
label='Top ' + str(top_percentile) + ' % at ' + str(percentile_score))
plt.title(filename + " zoom-in", fontsize=20)
plt.xlabel('Gene Mutation Number', fontsize=20)
plt.ylabel('Genes', fontsize=20)
plt.legend()
plt.show()
def graph_patient_distribution(numGenes, cases, patientToGenes, filename, top_percentile=10, bottom_percentile=10, zoomin_percentile=None, bins=100):
patientfrequencies = [len(patientToGenes[case]) for case in cases]
plt.figure()
plt.hist(patientfrequencies, bins)
percentile_score = stats.scoreatpercentile(patientfrequencies, bottom_percentile)
plt.axvline(percentile_score, color='k', linestyle='dashed', linewidth=2,
label='Bottom ' + str(top_percentile) + ' % at ' + str(percentile_score))
plt.title(filename, fontsize=20)
plt.xlabel('Patient Mutation Number', fontsize=20)
plt.ylabel('Patients', fontsize=20)
plt.legend()
plt.show()
if zoomin_percentile:
print "Zoomed into bottom " + str(zoomin_percentile) + " percent region"
zoomin_percentile_score = stats.scoreatpercentile(patientfrequencies, zoomin_percentile)
zoomin_mutationfrequencies = [m for m in patientfrequencies if m <= zoomin_percentile_score]
plt.figure()
plt.hist(zoomin_mutationfrequencies)
plt.title(filename + "zoom-in", fontsize=20)
plt.axvline(percentile_score, color='k', linestyle='dashed', linewidth=2,
label='Bottom ' + str(top_percentile) + ' % at ' + str(percentile_score))
plt.xlabel('Patient Mutation Number', fontsize=20)
plt.ylabel('Patients', fontsize=20)
plt.legend()
plt.show()
def cooccurrence_ratio(genes, geneToCases):
#print "Coverage is", numcoverage(genes, geneToCases), "for genes", genes, "of lengths", [len(geneToCases[gene]) for gene in genes]
return numoverlaps(genes, geneToCases) * 1.0 / numcoverage(genes, geneToCases)
def numcoverage(genes, geneToCases):
setlist = [set(geneToCases[gene]) for gene in genes]
return len(set.union(*setlist))
def numoverlaps(genes, geneToCases):
setlist = [set(geneToCases[gene]) for gene in genes]
return len(set.intersection(*setlist))
def overlaps(genes, geneToCases):
setlist = [set(geneToCases[gene]) for gene in genes]
return set.intersection(*setlist)
def exclusive_dict(genes, geneToCases, patientToGenes):
exclusive_dict = {}
for gene in genes:
exclusive_dict[gene] = set()
for gene in genes:
for case in geneToCases[gene]:
if len(set.intersection(set(genes), set(patientToGenes[case]))) == 1:
exclusive_dict[gene].add(case)
# If patient A is in exclusive_dict of gene B, then patient A has only gene B, and no other genes in the set
# of genes.
return exclusive_dict
def numexclusive(genes, geneToCases, patientToGenes):
exclusiveDict = exclusive_dict(genes, geneToCases, patientToGenes)
return sum([len(exclusiveCases) for exclusiveCases in exclusiveDict.values()])
def prod(iterable):
return reduce(operator.mul, iterable, 1)
def load_mutation_data(filename, patientFile=None, geneFile=None, minFreq=0):
"""Loads the mutation data in the given file.
:type filename: string
:param filename: Location of mutation data file.
:type patient_file: string
:param patient_file: Location of patient (whitelist) file.
:type gene_file: string
:param gene_file: Location of gene (whitelist) file.
:rtype: Tuple
**Returns:**
* **m** (*int*) - number of genes.
* **n** (*int*) - number of patients.
* **genes** (*list*) - genes in the mutation data.
* **patients** (*list*) - patients in the mutation data.
* **geneToCases** (*dictionary*) - mapping of genes to the patients in which they are mutated.
* **patientToGenes** (*dictionary*) - mapping of patients to the genes they have mutated.
"""
# Load the whitelists (if applicable)
if patientFile:
with open(patientFile) as f:
patients = set(l.rstrip().split()[0] for l in f if not l.startswith("#"))
else:
patients = None
if geneFile:
with open(geneFile) as f:
genes = set(l.rstrip().split()[0] for l in f if not l.startswith("#"))
else:
genes = set()
# Parse the mutation matrix
from collections import defaultdict
geneToCases, patientToGenes = defaultdict(set), defaultdict(set)
with open(filename) as f:
arrs = [l.rstrip().split("\t") for l in f if not l.startswith("#")]
for arr in arrs:
patient, mutations = arr[0], set(arr[1:])
if not patients or patient in patients:
if genes: mutations &= genes
# else: genes |= mutations
patientToGenes[patient] = mutations
for gene in mutations:
geneToCases[gene].add(patient)
genes = geneToCases.keys()
# Remove genes with fewer than min_freq mutations
toRemove = [g for g in genes if len(geneToCases[g]) < minFreq]
for g in toRemove:
for p in geneToCases[g]:
patientToGenes[p].remove(g)
del geneToCases[g]
genes.remove(g)
# Format and return output
genes, patients = geneToCases.keys(), patientToGenes.keys()
m, n = len(genes), len(patients)
return m, n, genes, patients, geneToCases, patientToGenes
def remove_blacklists(gene_blacklist, patient_blacklist, numGenes, numCases, genes, patients, geneToCases,
patientToGenes):
if gene_blacklist == None and patient_blacklist == None:
return numGenes, numCases, genes, patients, geneToCases, patientToGenes
else:
if patient_blacklist:
with open(patient_blacklist) as f:
blacklist_patients = set(l.rstrip().split()[0] for l in f if not l.startswith("#"))
else:
blacklist_patients = None
if gene_blacklist:
with open(gene_blacklist) as f:
blacklist_genes = set(l.rstrip().split()[0] for l in f if not l.startswith("#"))
else:
blacklist_genes = set()
newgeneToCases = geneToCases
newpatientToGenes = patientToGenes
if blacklist_genes:
for item in geneToCases.items():
if item[0] in blacklist_genes:
for patient in item[1]:
newpatientToGenes[patient].remove(item[0])
if not newpatientToGenes[patient]:
newpatientToGenes.pop(patient)
newgeneToCases.pop(item[0])
print "gene ", item[0], ' popped'
if blacklist_patients:
for item in patientToGenes.items():
if item[0] in blacklist_patients:
for gene in item[1]:
newgeneToCases[gene].remove(item[0])
if not newgeneToCases[gene]:
newgeneToCases.pop(gene)
newpatientToGenes.pop(item[0])
print "patient ", item[0], ' popped'
newgenes = newgeneToCases.keys()
newpatients = newpatientToGenes.keys()
newnumGenes = len(newgenes)
newnumCases = len(newpatients)
return newnumGenes, newnumCases, newgenes, newpatients, newgeneToCases, newpatientToGenes
def filtermatrix(top_percentile, numGenes, numCases, genes, patients, geneToCases, patientToGenes):
mutationfrequencies = [len(geneToCases[gene]) for gene in genes]
cutoff = stats.scoreatpercentile(mutationfrequencies, 100 - top_percentile)
newgeneToCases = geneToCases
newpatientToGenes = patientToGenes
for item in geneToCases.items():
if len(item[1]) < cutoff:
# for patient in item[1]:
# newpatientToGenes[patient].remove(item[0])
# if not newpatientToGenes[patient]:
# newpatientToGenes.pop(patient)
newgeneToCases.pop(item[0])
newgenes = newgeneToCases.keys()
newpatients = newpatientToGenes.keys()
newnumGenes = len(newgenes)
newnumCases = len(newpatients)
return newnumGenes, newnumCases, newgenes, newpatients, newgeneToCases, newpatientToGenes
def filtertopnumbermatrix(top_number, numGenes, numCases, genes, patients, geneToCases, patientToGenes):
mutationfrequencies = [len(geneToCases[gene]) for gene in genes]
cutoff = stats.scoreatpercentile(mutationfrequencies, 100 - top_number * 100. / numGenes)
newgeneToCases = geneToCases
newpatientToGenes = patientToGenes
for item in geneToCases.items():
if len(item[1]) < cutoff:
# for patient in item[1]:
# newpatientToGenes[patient].remove(item[0])
# # if not newpatientToGenes[patient]:
# # newpatientToGenes.pop(patient)
newgeneToCases.pop(item[0])
newgenes = newgeneToCases.keys()
newpatients = newpatientToGenes.keys()
newnumGenes = len(newgenes)
newnumCases = len(newpatients)
return newnumGenes, newnumCases, newgenes, newpatients, newgeneToCases, newpatientToGenes
def analyze_mutex_set_new(numCases, geneToCases, patientToGenes, geneset, compute_prob=True, trials=10000):
# Mutation Frequencies
mutationfrequencies = [len(geneToCases[gene]) for gene in geneset]
overlap = numoverlaps(geneset, geneToCases)
coverage = numcoverage(geneset, geneToCases)
c_ratio = overlap * 1.0 / coverage
if compute_prob:
if len(geneset) == 2:
mutexprob = mep.mutexprob(numCases, mutationfrequencies, overlap)
else:
exclusive = numexclusive(geneset, geneToCases, patientToGenes)
mutexprob = mep.mutexprob_approximate(numCases, exclusive, trials, *mutationfrequencies)
else:
mutexprob = 0.0
# distance = bgbp.get_gene_distance(*geneset)
mstats = {}
mstats['GeneSet'] = geneset
mstats['Gene0'], mstats['Gene1'] = tuple(geneset)
mstats['Type'] = 'MutuallyExclusive'
mstats['Probability'] = mutexprob
mstats['MutationFrequencies'] = mutationfrequencies
mstats['MutationFrequency0'], mstats['MutationFrequency1'] = tuple(mutationfrequencies)
mstats['MutationFrequencyDifference'] = abs(mutationfrequencies[0] - mutationfrequencies[1])
mstats['MutationFrequencyDifferenceRatio'] = mstats['MutationFrequencyDifference'] * 1.0 / coverage
mstats['Overlap'] = overlap
mstats['Coverage'] = coverage
mstats['CooccurrenceRatio'] = c_ratio
mstats['Concordance'] = (mstats['Gene0'][-4:] == mstats['Gene1'][-4:])
mstats['Somatic'] = 0
if (mstats['Gene0'][-4:] not in {'loss', 'gain'}):
mstats['Somatic'] += 1
if (mstats['Gene1'][-4:] not in {'loss', 'gain'}):
mstats['Somatic'] += 1
mstats['RoundedLogPCov'] = round(-np.log10(mutexprob/coverage), 1)
# mstats['Weight'] = 20.0 -
# mstats['Distance'] = distance
return mstats
def analyze_cooccur_set_new(numCases, geneToCases, patientToGenes, geneset, compute_prob=True, trials=10000,
getdistance=False, compute_scores=True, compute_mutex=False):
mutationfrequencies = [len(geneToCases[gene]) for gene in geneset]
overlap = numoverlaps(geneset, geneToCases)
if compute_prob:
if len(geneset) == 2:
cooccurprob = mep.cooccurprob(numCases, mutationfrequencies, overlap)
else:
cooccurprob = mep.cooccurprob_approximate(numCases, overlap, trials, *mutationfrequencies)
else:
cooccurprob = 0.0
if compute_mutex:
if len(geneset) == 2:
mutexprob = mep.mutexprob(numCases, mutationfrequencies, overlap)
else:
exclusive = numexclusive(geneset, geneToCases, patientToGenes)
mutexprob = mep.mutexprob_approximate(numCases, exclusive, trials, *mutationfrequencies)
else:
mutexprob = 0.0
coverage = numcoverage(geneset, geneToCases)
c_ratio = overlap * 1.0 / coverage
if overlap and compute_scores:
score = sco.score_cooccur_set(geneset, geneToCases, patientToGenes)
overlap_pmn = [len(patientToGenes[patient]) for patient in overlaps(geneset, geneToCases)]
average_overlap_pmn = sum(overlap_pmn) * 1.0 / len(overlap_pmn)
combined_score = score / c_ratio
else:
score = 0
overlap_pmn = 0
average_overlap_pmn = 0
combined_score = 0
if getdistance:
distance = bgbp.get_gene_distance(*geneset)
cstats = collections.OrderedDict()
cstats['GeneSet'] = geneset
if len(geneset) == 3:
cstats['Gene0'], cstats['Gene1'], cstats['Gene2'] = tuple(geneset)
cstats['MutationFrequency0'], cstats['MutationFrequency1'], cstats['MutationFrequency2'] = tuple(mutationfrequencies)
else:
cstats['Gene0'], cstats['Gene1'] = tuple(geneset)
cstats['MutationFrequency0'], cstats['MutationFrequency1'] = tuple(mutationfrequencies)
cstats['Type'] = 'Cooccurring'
cstats['Probability'] = cooccurprob
cstats['MutationFrequencies'] = mutationfrequencies
cstats['MutationFrequencyDifference'] = abs(mutationfrequencies[0] - mutationfrequencies[1])
cstats['MutationFrequencyDifferenceRatio'] = cstats['MutationFrequencyDifference'] * 1.0 / coverage
cstats['Overlap'] = overlap
cstats['CooccurrenceRatio'] = c_ratio
cstats['Coverage'] = coverage
cstats['SetScore'] = score
cstats['AverageOverlapPMN'] = average_overlap_pmn
cstats['CombinedScore'] = combined_score
cstats['Concordance'] = cstats['Gene0'][-4:] == cstats['Gene1'][-4:]
cstats['Somatic'] = 0
if (cstats['Gene0'][-4:] not in {'loss', 'gain'}):
cstats['Somatic'] += 1
if (cstats['Gene1'][-4:] not in {'loss', 'gain'}):
cstats['Somatic'] += 1
cstats['RoundedLogPCov'] = round(-np.log10(cooccurprob/coverage), 1)
if getdistance:
cstats['Distance'] = distance
if compute_mutex:
cstats['MutexProb'] = mutexprob
cstats['Type'] = 'Cooccurring' if cooccurprob < mutexprob else 'MutuallyExclusive'
return cstats
def runwholepipeline(args):
"""
* **m** (*int*) - number of genes.
* **n** (*int*) - number of patients.
* **genes** (*list*) - genes in the mutation data.
* **patients** (*list*) - patients in the mutation data.
* **geneToCases** (*dictionary*) - mapping of genes to the patients in which they are mutated.
* **patientToGenes** (*dictionary*) - mapping of patients to the genes they have mutated.
"""
# Record Starting Time
t = time.time()
# Parse the arguments into shorter variable handles
mutationmatrix = args.mutation_matrix
output_prefix = args.output_prefix
geneFile = args.gene_file
patientFile = args.patient_file
gene_blacklist = args.gene_blacklist_file
patient_blacklist = args.patient_blacklist_file
gene_file_1 = args.gene_list_1
gene_file_2 = args.gene_list_2
minFreq = args.min_freq
set_size = args.set_size
type = args.type
maxOverlap = args.max_overlaps
minCooccur = args.min_cooccur
p_value = args.p_value
cytoscape_output = args.cytoscape_output
complete_output = args.complete_output
top_percentile = args.top_percentile
top_number = args.top_number
just_sets = args.just_sets
plot_distribution = args.plot_distribution
plot_patient_distribution = args.plot_patient_distribution
min_cooccurrence_ratio = args.min_cooccurrence_ratio
#Load the matrix, and remove the blacklists
mutations = remove_blacklists(gene_blacklist, patient_blacklist,
*load_mutation_data(mutationmatrix, patientFile, geneFile, minFreq))
numGenes, numCases, genes, patients, geneToCases, patientToGenes = mutations
# Remove verbose output for convenience when getting summary stats
if (type != 'sss'):
print 'Pre-filter Mutation data: %s genes x %s patients' % (numGenes, numCases)
# Graph distributions first.
if plot_distribution:
graph_mutation_distribution(numCases, genes, geneToCases, mutationmatrix, bins=plot_distribution)
if plot_patient_distribution:
graph_patient_distribution(numGenes, patients, patientToGenes, mutationmatrix, bins=plot_patient_distribution)
# Filter by the top percentile or top number.
numGenes, numCases, genes, patients, geneToCases, patientToGenes = filtermatrix(top_percentile, *mutations)
if top_number:
numGenes, numCases, genes, patients, geneToCases, patientToGenes = filtertopnumbermatrix(top_number, *mutations)
if (type != 'sss'):
print 'Post-filter Mutation data: %s genes x %s patients' % (numGenes, numCases)
# print "Average number of mutations per patient: ", sum([len(patientToGenes[patient]) for patient in patients]) * 1.0 / numCases
# print "Standard deviation of mutations per patient: ", np.std([len(patientToGenes[patient]) for patient in patients])
# print "Median of mutations per patient:", np.median([len(patientToGenes[patient]) for patient in patients])
if gene_file_1:
with open(gene_file_1) as f:
gene_list_1 = set(l.rstrip().split()[0] for l in f if not l.startswith("#"))
else:
gene_list_1 = None
if gene_file_2:
with open(gene_file_2) as f:
gene_list_2 = set(l.rstrip().split()[0] for l in f if not l.startswith("#"))
else:
gene_list_2 = None
if (type == 'm'):
msigsets, mgene_occurrences = getmutexsets(numCases, genes, geneToCases, patientToGenes, set_size, p_value,
maxOverlap, genes1=gene_list_1, genes2=gene_list_2)
if (output_prefix == None):
file = sys.stdout
writemutexsets(file, msigsets, mgene_occurrences, p_value)
else:
file_prefix = output_prefix + '.g' + str(numGenes) + '.p' + str(numCases) + '.s' + str(set_size) + \
'.ns' + str(len(msigsets)) + '.ng' + str(len(mgene_occurrences)) + '.mf' + \
str(minFreq) + '.p' + str(p_value) + '.mo' + str(maxOverlap)
file = open(file_prefix + '.tsv', 'w')
writemutexsets(file, msigsets, mgene_occurrences, p_value)
file.close()
if cytoscape_output: writemutex_cytoscape(file_prefix, msigsets, mgene_occurrences, p_value)
if complete_output:
filename = file_prefix + '_complete' + '.tsv'
writecompleteinfo(filename, msigsets, mgene_occurrences)
print 'Number of sets: ', len(msigsets)
print "Number of genes: ", len(mgene_occurrences)
print 'Time used: ', time.time() - t
elif (type == 'c'):
csigsets, cgene_occurrences = getcooccursets_new(numCases, genes, geneToCases, patientToGenes,
set_size, p_value, minCooccur,
just_sets=just_sets,
min_cooccurrence_ratio=min_cooccurrence_ratio,
genes1=gene_list_1, genes2=gene_list_2)
if (output_prefix == None):
file = sys.stdout
writecooccursets(file, csigsets, cgene_occurrences, p_value)
else:
file_prefix = output_prefix + '.g' + str(numGenes) + '.p' + str(numCases) + '.s' + str(set_size) \
+ '.ns' + str(len(csigsets)) + '.ng' + str(len(cgene_occurrences)) + '.mf' \
+ str(minFreq) + '.tn' + str(top_number) + '.p' + str(p_value) + '.mc' + str(minCooccur) + \
'.mcr' + str(min_cooccurrence_ratio)
file = open(file_prefix + '.tsv', 'w')
writecooccursets(file, csigsets, cgene_occurrences, p_value)
file.close()
graph_cooccurrenceratio_distribution(csigsets, mutationmatrix)
if cytoscape_output: writecooccur_cytoscape(file_prefix, csigsets, cgene_occurrences, p_value)
if complete_output:
filename = file_prefix + '_complete' + '.tsv'
writecompleteinfo(filename, csigsets, cgene_occurrences)
print 'Number of sets: ', len(csigsets)
print "Number of genes: ", len(cgene_occurrences)
print 'Time used: ', time.time() - t
elif (type == 'h'):
file_prefix = output_prefix + '.g' + str(numGenes) + '.p' + str(numCases)
writeheatmap(numCases, geneToCases, patientToGenes, file_prefix,
heats=['CooccurrenceRatio', 'Probability', 'SetScore'])
print 'Time used: ', time.time() - t
elif (type == 'sss'):
print "Cancer\tPatient Number\tAverageMutations\tStandardDeviationMutations\tMinimum\tFirstQuartile\tMedianMutations\tThirdQuartile\tMaximum"
print mutationmatrix, "\t", numCases, "\t", sum([len(patientToGenes[patient]) for patient in patients]) * 1.0 / numCases, \
"\t", np.std([len(patientToGenes[patient]) for patient in patients]), "\t", np.min([len(patientToGenes[patient]) for patient in patients]), \
"\t", np.percentile([len(patientToGenes[patient]) for patient in patients], 25), \
"\t", np.median([len(patientToGenes[patient]) for patient in patients]), "\t", np.percentile([len(patientToGenes[patient]) for patient in patients], 75), \
"\t", np.percentile([len(patientToGenes[patient]) for patient in patients], 100)
def get_parser():
# Parse arguments
import argparse
description = 'Given an input number of samples n, and probability of mutual exclusivity p, ' \
'plots the number of mutations that each sample' \
'must have in order to reach that probability p.'
parser = argparse.ArgumentParser(description=description)
# General parameters
parser.add_argument('-m', '--mutation_matrix', required=True,
help='File name for mutation data.')
parser.add_argument('-o', '--output_prefix', default=None,
help='Output path prefix (TSV format). Otherwise just prints.')
parser.add_argument('-mf', '--min_freq', type=int, default=0,
help='Minimum gene mutation frequency.')
parser.add_argument('-tp', '--top_percentile', type=float, default=100,
help='Limit to this percentage of mutations of greatest abundance.')
parser.add_argument('-tn', '--top_number', type=int, default=0,
help='Limit to this number of mutations of greatest abundance.')
parser.add_argument('-pf', '--patient_file', default=None,
help='File of patients to be included (optional).')
parser.add_argument('-gf', '--gene_file', default=None,
help='File of genes to be included (optional).')
parser.add_argument('-pbf', '--patient_blacklist_file', default=None,
help='File of patients to be excluded (optional).')
parser.add_argument('-gbf', '--gene_blacklist_file', default=None,
help='File of genes to be excluded (optional).')
parser.add_argument('-gl1', '--gene_list_1', default=None,
help='First sets of genes to draw from')
parser.add_argument('-gl2', '--gene_list_2', default=None,
help='Second set of genes to draw from')
parser.add_argument('-s', '--set_size', type=int, default=2, help='Number of genes per set')
parser.add_argument('-t', '--type', default='m',
help='Use m for mutual exclusivity, c for cooccuring')
parser.add_argument('-mo', '--max_overlaps', type=int, default=10,
help='Maximum allowed number of overlapping mutations per mutually exclusive set')
parser.add_argument('-mc', '--min_cooccur', type=int, default=1,
help='Minimum number of cooccurrences per cooccuring set')
parser.add_argument('-p', '--p_value', type=float, default=0.05,
help='Significance Threshold.')
parser.add_argument('-v', '--cytoscape_output', type=int, default=1, help='Set to 1 to produce cytoscape-compatible'
'outputs')
parser.add_argument('-co', '--complete_output', type=int, default=1, help='Set to 1 to produce a file with complete information')
#parser.add_argument('-cif', '--check_in_file', default=None, help='Name of file to check if the set is in')
parser.add_argument('-js', '--just_sets', type=int, default=0, help='Just find the possible cooccurring sets,'
'without checking for significance')
parser.add_argument('-pd', '--plot_distribution', type=int, default=0,
help='Plot distribution of mutation frequencies '
'with this number of bins before running')
parser.add_argument('-ppd', '--plot_patient_distribution', type=int, default=0,
help='Plot distribution of mutation number'
'per gene '
'with this number of bins before running')
parser.add_argument('-mcr', '--min_cooccurrence_ratio', type=float, default=0.0,
help='The minimum cooccurrence ratio for a set to be deemed significant.')
return parser
def main():
runwholepipeline(get_parser().parse_args(sys.argv[1:]))
if __name__ == '__main__':
main()
# ----------------------------------------------------------------------------------------------------------------------
# BELOW FOLLOWS UNUSED CODE
# ----------------------------------------------------------------------------------------------------------------------
def getmutexstats(filename, *geneset, **kwargs):
minFreq = kwargs['minFreq'] if 'minFreq' in kwargs else 0
trials = kwargs['trials'] if 'trials' in kwargs else 10000
mutations = load_mutation_data(filename, minFreq=minFreq)
numGenes, numCases, genes, patients, geneToCases, patientToGenes = mutations
mutationfrequencies = [len(geneToCases[gene]) for gene in geneset]
overlap = numoverlaps(geneset, geneToCases)
coverage = numcoverage(geneset, geneToCases)
c_ratio = overlap * 1.0 / coverage
exclusive = numexclusive(geneset, geneToCases, patientToGenes)
mutexprob = mep.mutexprob_approximate(numCases, exclusive, trials, *mutationfrequencies)
cooccurprob = mep.cooccurprob_approximate(numCases, overlap, trials, *mutationfrequencies)
print "For the genes: ", geneset
print "Mutation frequencies are: ", mutationfrequencies
print "Overlap is ", overlap
print "Coverage is ", coverage
print "Cooccurrence ratio is ", c_ratio
print "Number of exclusive alterations is ", exclusive
print "Mutual exclusivity p-value is ", mutexprob
print "Cooccurrence p-value is ", cooccurprob
return mutationfrequencies, overlap, coverage, c_ratio, exclusive, mutexprob, cooccurprob
def analyze_mutex_set(numCases, geneToCases, patientToGenes, geneset, compute_prob=True, trials=10000):
# Mutation Frequencies
mutationfrequencies = [len(geneToCases[gene]) for gene in geneset]
overlap = numoverlaps(geneset, geneToCases)
coverage = numcoverage(geneset, geneToCases)
c_ratio = cooccurrence_ratio(geneset, geneToCases)
if compute_prob:
if len(geneset) == 2:
mutexprob = mep.mutexprob(numCases, mutationfrequencies, overlap)
else:
exclusive = numexclusive(geneset, geneToCases, patientToGenes)
mutexprob = mep.mutexprob_approximate(numCases, exclusive, trials, *mutationfrequencies)
else:
mutexprob = 0.0
return mutationfrequencies, overlap, coverage, c_ratio, mutexprob
def writeheatmap(numCases, geneToCases, patientToGenes, file_prefix, heats=['CooccurrenceRatio']):
"""Given the geneToCases and patientToGenes dictionaries, write the heatmaps of all the scores in: heats. Write with
rows and columns."""
# Start with all possible gene sets.
# start with np array
# For each gene in genes, and each gene in genes
# analyze the cooccur set. Get the entries
genes = geneToCases.keys()
numgenes = len(genes)
heatmap_list = []
#All defaults are 0s.
for h in range(len(heats)):
heatmap_list.append(np.zeros([numgenes, numgenes]))
for g in range(numgenes):
for g2 in range(numgenes):
if g != g2:
geneset = [genes[g], genes[g2]]
mutationfrequencies, overlap, coverage, c_ratio, cooccurprob, \
score, overlap_pmn, average_overlap_pmn, combined_score = analyze_cooccur_set(numCases, geneToCases, patientToGenes,
geneset)
total_gene_length = sum([sco.gene_to_length(gene) for gene in geneset])
entry = collections.OrderedDict()
entry['GeneSet'] = geneset
entry['Probability'] = cooccurprob
entry['MutationFrequencies'] = mutationfrequencies
entry['Overlap'] = overlap
entry['CooccurrenceRatio'] = c_ratio
entry['Coverage'] = coverage
entry['SetScore'] = score
entry['AverageOverlapPMN'] = average_overlap_pmn
entry['TotalGeneLength'] = total_gene_length
entry['CombinedScore'] = combined_score
for h in range(len(heats)):
heatmap_list[h][g][g2] = entry[heats[h]]
# Make the row and column headers
# Write all the heats.
for h in range(len(heats)):
filename = file_prefix + '_' + heats[h] + '.tsv'
heatmap = heatmap_list[h]
with open(filename, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter = '\t')
writer.writerow(genes)
for g in range(len(genes)):
writer.writerow(heatmap[g].tolist())
# row_format ="{:>15}" * (len(teams_list) + 1)
# print row_format.format("", *teams_list)
# for team, row in zip(teams_list, data):
# print row_format.format(team, *row)
#
# def analyze_mutex_set_new_network(numCases, geneToCases, patientToGenes, geneset, compute_prob=True, trials=10000):
# try:
# analyze_mutex_set_new_network.pm
# except AttributeError:
# analyze_mutex_set_new_network.pm = mun.PermutationMatrices(geneToCases, patientToGenes, num_permutations=200)
#
#
# # Mutation Frequencies
# mutationfrequencies = [len(geneToCases[gene]) for gene in geneset]
# overlap = numoverlaps(geneset, geneToCases)
# coverage = numcoverage(geneset, geneToCases)
# c_ratio = overlap * 1.0 / coverage
#
# if compute_prob:
# if len(geneset) == 2:
# mutexprob = mep.mutexprob(numCases, mutationfrequencies, overlap)
#
# # Calculate probability
# condition = {}
# condition['Genes'] = geneset
# condition['Overlap'] = overlap
# condition['Mutex'] = True
#
# condition_function = mun.Condition([condition])
# networkprob = analyze_mutex_set_new_network.pm.pvalue(condition_function)
# if networkprob < mutexprob:
# print "Old mutexprob is ", mutexprob, "and newmutexprob is ", networkprob
# #
# # else:
# # exclusive = numexclusive(geneset, geneToCases, patientToGenes)
# # mutexprob = mep.mutexprob_approximate(numCases, exclusive, trials, *mutationfrequencies)
# else:
# mutexprob = 0.0
#
# # distance = bgbp.get_gene_distance(*geneset)
#
#
# mstats = {}
# mstats['GeneSet'] = geneset
# mstats['Gene0'], mstats['Gene1'] = tuple(geneset)
# mstats['Type'] = 'MutuallyExclusive'
# # mstats['Probability'] = mutexprob
#
# mstats['Probability'] = networkprob
#
# mstats['MutationFrequencies'] = mutationfrequencies
# mstats['MutationFrequency0'], mstats['MutationFrequency1'] = tuple(mutationfrequencies)
# mstats['MutationFrequencyDifference'] = abs(mutationfrequencies[0] - mutationfrequencies[1])
# mstats['MutationFrequencyDifferenceRatio'] = mstats['MutationFrequencyDifference'] * 1.0 / coverage
# mstats['Overlap'] = overlap
# mstats['Coverage'] = coverage
# mstats['CooccurrenceRatio'] = c_ratio
# mstats['Concordance'] = (mstats['Gene0'][-4:] == mstats['Gene1'][-4:])
#
# mstats['Somatic'] = 0
# if (mstats['Gene0'][-4:] not in {'loss', 'gain'}):
# mstats['Somatic'] += 1
# if (mstats['Gene1'][-4:] not in {'loss', 'gain'}):
# mstats['Somatic'] += 1
#
# mstats['RoundedLogPCov'] = round(-np.log10(mutexprob/coverage), 1)
# # mstats['Weight'] = 20.0 -
# # mstats['Distance'] = distance
#
# return mstats
def analyze_cooccur_set(numCases, geneToCases, patientToGenes, geneset, compute_prob=True, trials=10000):
mutationfrequencies = [len(geneToCases[gene]) for gene in geneset]
overlap = numoverlaps(geneset, geneToCases)
if compute_prob:
if len(geneset) == 2:
cooccurprob = mep.cooccurprob(numCases, mutationfrequencies, overlap)
else:
cooccurprob = mep.cooccurprob_approximate(numCases, overlap, trials, *mutationfrequencies)
else:
cooccurprob = 0.0
coverage = numcoverage(geneset, geneToCases)
c_ratio = cooccurrence_ratio(geneset, geneToCases)
if overlap:
score = sco.score_cooccur_set(geneset, geneToCases, patientToGenes)
overlap_pmn = [len(patientToGenes[patient]) for patient in overlaps(geneset, geneToCases)]
average_overlap_pmn = sum(overlap_pmn) * 1.0 / len(overlap_pmn)
combined_score = score / c_ratio
else:
score = 0
overlap_pmn = 0
average_overlap_pmn = 0
combined_score = 0
return mutationfrequencies, overlap, coverage, c_ratio, cooccurprob, score, overlap_pmn, average_overlap_pmn, combined_score
def remove_extra_genes(extra_genes, numGenes, numCases, genes, patients, geneToCases, patientToGenes):
newgeneToCases = geneToCases
newpatientToGenes = patientToGenes
if extra_genes:
for item in geneToCases.items():
if item[0] in extra_genes:
for patient in item[1]:
newpatientToGenes[patient].remove(item[0])
if not newpatientToGenes[patient]:
newpatientToGenes.pop(patient)
newgeneToCases.pop(item[0])
newgenes = newgeneToCases.keys()
newpatients = newpatientToGenes.keys()
newnumGenes = len(newgenes)
newnumCases = len(newpatients)
return newnumGenes, newnumCases, newgenes, newpatients, newgeneToCases, newpatientToGenes