-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmutex_triangles.py
2180 lines (1348 loc) · 75.3 KB
/
mutex_triangles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
__author__ = 'jlu96'
import mutex as mex
import csv
import collections
import time
from scipy import stats
import edgereader as edg
import networkx as nx
import sys
import parallel_compute_working as pac
import bingenesbypairs as bgbp
import lowmutatedness as lm
import line_profiler
class Triplet:
def __init__(self, number, geneToCases=None, pairdict=None):
assert len(pairdict) == 3
self.number = number
self.pairdict = pairdict.copy()
self.genes = set.union(*[set(pair) for pair in pairdict.keys()])
types = [self.pairdict[pair]['Type'] for pair in self.pairdict]
self.mpairs = [pair for pair in self.pairdict if self.pairdict[pair]['Type'] == 'MutuallyExclusive']
self.cpairs = [pair for pair in self.pairdict if self.pairdict[pair]['Type'] == 'Cooccurring']
self.type = ''.join(sorted(types))
self.stats = collections.OrderedDict()
self.stats['ID'] = self.number
if geneToCases:
self.stats['Count'] = len(self.get_matching_patients(geneToCases))
self.calc_double_stats()
def get_matching_patients(self, geneToCases):
if self.type == 'CooccurringMutuallyExclusiveMutuallyExclusive':
cpair = set(self.cpairs[0])
other = (self.genes.difference(cpair)).pop()
matches = set()
cpair_matches = set.union(*(geneToCases[gene] for gene in cpair))
other_matches = geneToCases[other]
matches = matches.union(cpair_matches.difference(other_matches))
matches = matches.union(other_matches.difference(cpair_matches))
self.matches = matches
return matches
elif self.type == 'MutuallyExclusiveMutuallyExclusiveMutuallyExclusive':
matches = set()
for gene in self.genes:
other_genes = self.genes.difference(set(gene))
this_gene_matches = geneToCases[gene]
other_gene_matches = set.union(*(geneToCases[gene] for gene in other_genes))
only_this_gene_matches = this_gene_matches.difference(other_gene_matches)
matches = matches.union(only_this_gene_matches)
self.matches = matches
return matches
elif self.type == 'CooccurringCooccurringCooccurring':
self.matches = set.intersection(*(geneToCases[gene] for gene in self.genes))
return self.matches
elif self.type == 'CooccurringCooccurringMutuallyExclusive':
gene0, gene1 = tuple(set(self.mpairs[0]))
other_gene = self.genes.difference({gene0, gene1}).pop()
matches = set()
cooccur_patients_0 = set.intersection(*[geneToCases[gene0], geneToCases[other_gene]])
cooccur_patients_1 = set.intersection(*[geneToCases[gene1], geneToCases[other_gene]])
matches = matches.union(cooccur_patients_0.difference(cooccur_patients_1))
first_count = len(matches)
matches = matches.union(cooccur_patients_1.difference(cooccur_patients_0))
self.matches = matches
return matches
return []
def calc_double_stats(self):
# Left off here, move writable dict to here? Quickly.
gene0, gene1, gene2 = tuple(self.genes)
self.stats['Gene0'], self.stats['Gene1'], self.stats['Gene2'] = gene0, gene1, gene2
for i in range(len(tuple(self.genes))):
self.stats['Gene' + str(i) + "Cytobands"] = bgbp.get_segment_gene_info(tuple(self.genes)[i])['Cytobands']
pair01, pair02, pair12 = frozenset([gene0, gene1]), frozenset([gene0, gene2]), frozenset([gene1, gene2]),
self.stats['TripletType'] = self.type
score_names = ['Coverage', 'SetScore', 'CooccurrenceRatio', 'CombinedScore', 'TotalEdgeBetweennessCentrality',
'AverageNodeClosenessCentrality', 'AverageNodeClusteringCoefficient', 'RoundedLogPCov']
for score_name in score_names:
pair_scores = [self.pairdict[pair][score_name] for pair in self.pairdict if score_name in self.pairdict[pair]]
if pair_scores:
self.stats['Average' + score_name] = sum(pair_scores)/len(pair_scores)
else:
self.stats['Average' + score_name] = 0
self.stats['TripletScore'] = self.stats['AverageCombinedScore'] * 1.0 / self.stats['AverageRoundedLogPCov']
self.stats['01Type'] = self.pairdict[pair01]['Type']
self.stats['02Type']= self.pairdict[pair02]['Type']
self.stats['12Type'] = self.pairdict[pair12]['Type']
self.stats['01Concordance'] = self.pairdict[pair01]['Concordance']
self.stats['02Concordance']= self.pairdict[pair02]['Concordance']
self.stats['12Concordance'] = self.pairdict[pair12]['Concordance']
self.stats['Somatic'] = 0
for gene in tuple(self.genes):
if gene[-4:] not in {'loss', 'gain'}:
self.stats['Somatic'] += 1
self.stats['Probability'] = mex.prod([self.pairdict[pair]['Probability'] for pair in self.pairdict])
genes = [gene0, gene1, gene2]
# add the normal chromosome info
for i in range(len(genes)):
gene = genes[i]
info = bgbp.get_segment_gene_info(gene)
self.stats['Gene' + str(i) + "Loc"] = str(info['Chromosome']) + ":" + str(info['Start'])
# add the gene cytoband info
\
for i in range(len(genes)):
gene = genes[i]
info = bgbp.get_segment_gene_info(gene)
self.stats['Gene' + str(i) + "Cytobands"] = str(info['Cytobands'])
def calc_triple_stats(self, numCases, geneToCases, patientToGenes, compute_prob=False, calc_triple_scores=False):
if calc_triple_scores and self.type == 'CooccurringCooccurringCooccurring':
triple_stats = mex.analyze_cooccur_set_new(numCases, geneToCases, patientToGenes, self.genes, compute_prob=compute_prob)
triple_stats.update(self.stats)
self.stats = triple_stats.copy()
self.overlap = self.stats['Overlap']
self.coverage = self.stats['Coverage']
self.ratio = self.stats['CooccurrenceRatio']
else:
self.overlap = mex.numoverlaps(self.genes, geneToCases)
self.coverage = mex.numcoverage(self.genes, geneToCases)
self.ratio = self.overlap * 1.0 / self.coverage
self.stats['Overlap'] = self.overlap
self.stats['Coverage'] = self.coverage
self.stats['CooccurrenceRatio'] = self.ratio
def getwritabledict(self):
#[pair1, pair2, pair3] = self.pairdict.keys()
return self.stats
def getTriplets(pairsdict, genesdict, pairstotest, numCases=None, geneToCases=None, patientToGenes = None, compute_prob=False, name='Triplets',
calc_triple_stats=True, calc_triple_scores=False, only_mixed=False):
"""
:param pairsdict:
:param genesdict:
:param numCases:
:param geneToCases:
:param patientToGenes:
:param compute_prob:
:param name:
:param calc_triple_stats: Calc cooccurrence ratio, etc.
:param calc_triple_scores: Calc the set scores, etc.
:return:
"""
t0 = time.time()
Triplets = []
num_Triplets = 0
# Number of triplets each pair has
print "number of pairs ", len(pairsdict)
pairsdict_Triplets = pairsdict.copy()
for pair in pairsdict:
pairsdict_Triplets[pair][name] = set()
pairsdict_Triplets[pair]['num' + name] = 0
pairsdict_Triplets[pair]['type' + name] = set()
print "Pair info of triplets initialized"
# Number of triplets each gene is in
genesdict_Triplets = {}
for gene in genesdict:
genesdict_Triplets[gene] = {}
genesdict_Triplets[gene]['Gene'] = gene
genesdict_Triplets[gene][name] = set()
genesdict_Triplets[gene]['num' + name] = 0
#genesdict_Triplets[gene]['type' + name] = set()
gene_triples = set()
# t = time.time()
#
# time
for pair in pairstotest:
# print "Getting pairs: ", pair
gene1, gene2 = tuple(pair)
if gene1 in genesdict and gene2 in genesdict:
genes1 = genesdict[gene1]
genes2 = genesdict[gene2]
# The set of genes that cooccur with both genes.
both = genes1.intersection(genes2)
if both:
for bothgene in both:
gene_triple = frozenset([gene1, gene2, bothgene])
bothpair1 = frozenset([gene1, bothgene])
bothpair2 = frozenset([gene2, bothgene])
# print "Both pairs: ", bothpair1, bothpair2
if (not only_mixed) or 'MutuallyExclusive' in [pairsdict[pair]['Type'], pairsdict[bothpair1]['Type'], pairsdict[bothpair2]['Type']]:
if gene_triple not in gene_triples:
gene_triples.add(gene_triple)
pairdict = {}
pairdict[pair] = pairsdict[pair]
pairdict[bothpair1] = pairsdict[bothpair1]
pairdict[bothpair2] = pairsdict[bothpair2]
newTriplet = Triplet(num_Triplets, pairdict=pairdict, geneToCases=geneToCases)
Triplets.append(newTriplet)
# pairsdict_Triplets[pair][name].add(num_Triplets)
# pairsdict_Triplets[pair]['num' + name] += 1
# pairsdict_Triplets[bothpair1][name].add(num_Triplets)
# pairsdict_Triplets[bothpair1]['num' + name] += 1
# pairsdict_Triplets[bothpair2][name].add(num_Triplets)
# pairsdict_Triplets[bothpair2]['num' + name] += 1
if calc_triple_stats:
newTriplet.calc_triple_stats(numCases, geneToCases, patientToGenes, compute_prob=compute_prob,
calc_triple_scores=calc_triple_scores)
for tpair in pairdict:
pairsdict_Triplets[tpair][name].add(num_Triplets)
pairsdict_Triplets[tpair]['num' + name] += 1
pairsdict_Triplets[tpair]['type' + name].add(newTriplet.type)
num_Triplets += 1
genesdict_Triplets[gene1][name].add(num_Triplets)
genesdict_Triplets[gene1]['num' + name] += 1
genesdict_Triplets[gene2][name].add(num_Triplets)
genesdict_Triplets[gene2]['num' + name] += 1
genesdict_Triplets[bothgene][name].add(num_Triplets)
genesdict_Triplets[bothgene]['num' + name] += 1
#print len(both), "triplets calculated in ", time.time() - t0
# for pair in pairsdict:
# if pair not in pairstotest:
# pairsdict_Triplets.pop(pair)
print len(Triplets), " triplets calculated in ", time.time() - t0
sorted_pairs = sorted(pairsdict_Triplets.keys(), key=lambda entry: pairsdict_Triplets[entry]['num' + name], reverse=True)
sorted_genes = sorted(genesdict_Triplets.keys(), key=lambda entry: genesdict_Triplets[entry]['num' + name], reverse=True)
print "Including sorting time ", time.time() - t0
return Triplets, pairsdict_Triplets, sorted_pairs, genesdict_Triplets, sorted_genes
def combine_pairsdict_Triplets(pairsdict0, pairsdict1):
# pairsdict_Triplets = pairsdict.copy()
# for pair in pairsdict:
# pairsdict_Triplets[pair][name] = set()
# pairsdict_Triplets[pair]['num' + name] = 0
# pairsdict_Triplets[pair]['type' + name] = set()
pairsdict = pairsdict0.copy()
for pair in pairsdict1:
if pair not in pairsdict:
pairsdict[pair] = pairsdict1[pair]
else:
pairsdict[pair]['Triplets'] = pairsdict[pair]['Triplets'].union(pairsdict1[pair]['Triplets'])
pairsdict[pair]['numTriplets'] += pairsdict1[pair]['numTriplets']
pairsdict[pair]['typeTriplets'] = pairsdict[pair]['typeTriplets'].union(pairsdict1[pair]['typeTriplets'])
return pairsdict
def combine_genesdict_Triplets(genesdict0, genesdict1):
# genesdict_Triplets = {}
# for gene in genesdict:
# genesdict_Triplets[gene] = {}
# genesdict_Triplets[gene]['Gene'] = gene
# genesdict_Triplets[gene][name] = set()
# genesdict_Triplets[gene]['num' + name] = 0
genesdict = genesdict0.copy()
for gene in genesdict1:
if gene not in genesdict:
genesdict[gene] = genesdict1[gene]
else:
genesdict[gene]['Triplets'] = genesdict[gene]['Triplets'].union(genesdict1[gene]['Triplets'])
genesdict[gene]['numTriplets'] += genesdict1[gene]['numTriplets']
return genesdict
def writeTriplets(Triplets, file_prefix, delimiter='\t', fieldnames=None):
# Dictwriter
# Get writabledict from each Triplet, make header from
Tripletfile = file_prefix + '_Triplets.tsv'
genefile = file_prefix + '_Tripletgenes.txt'
with open(Tripletfile, 'w') as csvfile:
if not fieldnames:
fieldnames = Triplets[0].getwritabledict().keys()
writer = csv.DictWriter(csvfile, delimiter=delimiter, fieldnames=fieldnames, extrasaction='ignore')
writer.writeheader()
for Triplet in Triplets:
writer.writerow(Triplet.getwritabledict())
print "Triplets written to ", file_prefix + '_Triplets.tsv'
def writeTriplets2(Triplets, Tripletfile, delimiter='\t', fieldnames=None):
# Dictwriter
# Get writabledict from each Triplet, make header from
with open(Tripletfile, 'w') as csvfile:
if not fieldnames:
fieldnames = Triplets[0].getwritabledict().keys()
writer = csv.DictWriter(csvfile, delimiter=delimiter, fieldnames=fieldnames, extrasaction='ignore')
writer.writeheader()
for Triplet in Triplets:
writer.writerow(Triplet.getwritabledict())
print "Triplets written to ",Tripletfile
def writeanydict(anydict, filename, delimiter='\t', fieldnames=None, orderedkeys=None):
with open(filename, 'w') as csvfile:
if not fieldnames:
fieldnames = anydict.values()[0].keys()
writer = csv.DictWriter(csvfile, delimiter=delimiter, fieldnames=fieldnames, extrasaction='ignore')
writer.writeheader()
if orderedkeys:
for key in orderedkeys:
writer.writerow(anydict[key])
else:
for entry in anydict.values():
writer.writerow(entry)
def writegenedict(genedict, filename, delimiter='\t', fieldnames=None):
with open(filename, 'w') as csvfile:
if not fieldnames:
fieldnames = ["Gene", "Entries"]
writer = csv.writer(csvfile, delimiter=delimiter)
writer.writerow(fieldnames)
for gene in genedict:
writer.writerow([gene] + [genedict[gene]])
def getgenepairs(geneToCases, genes1, genes2=None, test_minFreq=0):
"""
:param genes1: First list of genes.
:param genes2: Second list of genes. If None, defaults to making pairs from the first gene list.
:return: genepairs, a set of all the possible genepairs between genes1 and genes2
"""
if not genes2:
genes2 = genes1
relevant_genes = set([gene for gene in geneToCases.keys() if len(geneToCases[gene]) >= test_minFreq])
genepairs = set()
for gene1 in genes1:
for gene2 in genes2:
if gene1 != gene2:
if gene1 in relevant_genes and gene2 in relevant_genes:
genepair = frozenset([gene1, gene2])
genepairs.add(genepair)
return list(genepairs)
def loadgenepairs(pair_list_file, geneToCases):
relevant_genes = set(geneToCases.keys())
genepairs = set()
with open(pair_list_file, 'rU') as csvfile:
reader = csv.reader(csvfile, delimiter='\t')
for row in reader:
if row[0] in relevant_genes and row[1] in relevant_genes:
genepairs.add(frozenset(row))
return list(genepairs)
def mutexpairs(numCases, geneToCases, patientToGenes, genepairs, p=1.0, maxOverlap=200, compute_prob=True):
"""
:param numCases: The number of patients, total.
:param geneToCases: Mapping of genes to cases.
:param patientToGenes: Mapping of patients to genes
:param p: Threshold for probability
:param genepairs: The list of genepairs.
:return: mpairsdict, mgenedict
mpairsdict: A dictionary of sets which are significant, according to p, mapped to the statistics of that set.
mgenedict: A dictionary of genes, mapped to the genes with which they are mutually exclusive.
"""
mpairsdict = {}
mgenedict = {}
for genepair in genepairs:
mstats = mex.analyze_mutex_set_new(numCases, geneToCases, patientToGenes, genepair, compute_prob=compute_prob)
mprob = mstats['Probability']
moverlap = mstats['Overlap']
if mprob < p and moverlap <= maxOverlap:
mpairsdict[genepair] = mstats
gene1, gene2 = tuple(genepair)
if gene1 not in mgenedict:
mgenedict[gene1] = set()
mgenedict[gene1].add(gene2)
else:
mgenedict[gene1].add(gene2)
if gene2 not in mgenedict:
mgenedict[gene2] = set()
mgenedict[gene2].add(gene1)
else:
mgenedict[gene2].add(gene1)
return mpairsdict, mgenedict
def cooccurpairs(numCases, geneToCases, patientToGenes, genepairs, p=1.1, minCooccur=-1, compute_prob=True, cooccur_distance_threshold=None,
min_cooccurrence_ratio=-1.0, compute_mutex=False):
"""
:param numCases: The number of patients, total.
:param geneToCases: Mapping of genes to cases.
:param patientToGenes: Mapping of patients to genes
:param p: Threshold for probability
:param genepairs: The list of genepairs.
:return: cpairsdict, cgenedict
cpairsdict: A dictionary of sets which are significant, according to p, mapped to the statistics of that set.
cgenedict: A dictionary of genes, mapped to the genes with which they are mutually exclusive.
"""
cpairsdict = {}
cgenedict = {}
for genepair in genepairs:
# Preliminary Distance Filter
cratio = mex.cooccurrence_ratio(tuple(genepair), geneToCases)
if cratio >= min_cooccurrence_ratio:
cstats = mex.analyze_cooccur_set_new(numCases, geneToCases, patientToGenes, genepair, compute_prob=compute_prob,
getdistance=cooccur_distance_threshold, compute_mutex=compute_mutex)
cprob = cstats['Probability']
coverlap = cstats['Overlap']
cratio = cstats['CooccurrenceRatio']
if cprob < p and coverlap >= minCooccur and cratio >= min_cooccurrence_ratio:
if not (cooccur_distance_threshold) or cstats['Distance'] > cooccur_distance_threshold:
cpairsdict[genepair] = cstats
gene1, gene2 = tuple(genepair)
if gene1 not in cgenedict:
cgenedict[gene1] = set()
cgenedict[gene1].add(gene2)
else:
cgenedict[gene1].add(gene2)
if gene2 not in cgenedict:
cgenedict[gene2] = set()
cgenedict[gene2].add(gene1)
else:
cgenedict[gene2].add(gene1)
else:
print "Pair not found ", genepair
print cprob, coverlap, cratio, cooccur_distance_threshold
return cpairsdict, cgenedict
def filterpairs_new(pairsdict, genesdict, entryToFilter):
"""
:param pairsdict:
:param genesdict:
:param entry: Entry of pairsdict.
:param pair_filter: Function that returns True if want to keep.
:return:
"""
new_pairsdict = pairsdict.copy()
new_genesdict = genesdict.copy()
for pair in pairsdict:
for entry in entryToFilter:
if (entry not in pairsdict[pair]) or not entryToFilter[entry](pairsdict[pair][entry]):
if (entry not in pairsdict[pair]):
print "Attribute not in pair"
else:
pass
# print "Entry: ", entry
# print pairsdict[pair][entry]
gene0, gene1 = tuple(pair)
new_pairsdict.pop(pair)
if gene0 in new_genesdict:
new_genesdict[gene0].remove(gene1)
if not new_genesdict[gene0]:
new_genesdict.pop(gene0)
if gene1 in new_genesdict:
new_genesdict[gene1].remove(gene0)
if not new_genesdict[gene1]:
new_genesdict.pop(gene1)
break
return new_pairsdict, new_genesdict
def pairs_limittogenes(pairsdict, genesdict, genes):
newpairsdict = {}
newgenesdict = {}
#geneset = set(genes)
for gene in genes:
if gene in genesdict:
othergenes = genesdict[gene]
for othergene in othergenes:
pair = frozenset([gene, othergene])
newpairsdict[pair] = pairsdict[pair]
if gene not in newgenesdict:
newgenesdict[gene] = set()
newgenesdict[gene].add(othergene)
else:
newgenesdict[gene].add(othergene)
if othergene not in newgenesdict:
newgenesdict[othergene] = set()
newgenesdict[othergene].add(gene)
else:
newgenesdict[othergene].add(gene)
# bothgenes = geneset.intersection(othergenes)
# if bothgenes:
# for bothgene in bothgenes:
# pair = frozenset([gene, bothgene])
# newpairsdict[pair] = pairsdict[pair]
# if gene not in newgenesdict:
# newgenesdict[gene] = {bothgene}
# else:
# newgenesdict[gene].add(bothgene)
# if bothgene not in newgenesdict:
# newgenesdict[bothgene] = {gene}
# else:
# newgenesdict[bothgene].add(gene)
return newpairsdict, newgenesdict
def filter_mutex_gainloss(mpairdict, mgenedict):
newmpairdict = mpairdict.copy()
newmgenedict = mgenedict.copy()
for pair in mpairdict:
genes = tuple(pair)
if genes[0][:-4] == genes[1][:-4]:
newmpairdict.pop(pair)
newmgenedict[genes[0]].remove(genes[1])
if not newmgenedict[genes[0]]:
newmgenedict.pop(genes[0])
newmgenedict[genes[1]].remove(genes[0])
if not newmgenedict[genes[1]]:
newmgenedict.pop(genes[1])
return newmpairdict, newmgenedict
def complete_mutexpairs(numCases, geneToCases, patientToGenes, genepairs, mprob, maxOverlap, parallel_compute_number,
filter_mutex_gain_loss, filter_mutex_same_segment, perm_matrices):
"""
Complete Wrapper function for mutexpairs.
:return: mpairsdict, mgenedict
"""
t = time.time()
if perm_matrices:
mpairsdict, mgenedict = perm_matrices.complete_mutexpairs(genepairs, p=mprob, maxOverlap=maxOverlap,
parallel_compute_number=parallel_compute_number)
else:
if parallel_compute_number:
mpairsdict, mgenedict = pac.parallel_compute_new(mutexpairs, [numCases, geneToCases, patientToGenes, genepairs, mprob, maxOverlap, True],
list(genepairs), 3, pac.partition_inputs, {0: pac.combine_dictionaries},
number=parallel_compute_number,
procnumber=parallel_compute_number)
mgenedict = edg.get_gene_dict(mpairsdict)
# old_mpairsdict, old_mgenedict = mutexpairs(numCases, geneToCases, patientToGenes, genepairs, p=mprob, maxOverlap=maxOverlap)
#
# print len(set(mpairsdict.keys()).difference(set(old_mpairsdict.keys())))
# print len(set(old_mpairsdict.keys()).difference(set(mpairsdict.keys())))
else:
mpairsdict, mgenedict = mutexpairs(numCases, geneToCases, patientToGenes, genepairs, p=mprob, maxOverlap=maxOverlap)
if filter_mutex_gain_loss:
prevlen = len(mpairsdict)
mpairsdict, mgenedict = filter_mutex_gainloss(mpairsdict, mgenedict)
print prevlen - len(mpairsdict), " mutex pairs removed by same-gene filter."
if filter_mutex_same_segment:
prevlen = len(mpairsdict)
mpairsdict, mgenedict = filter_mutex_samesegment(mpairsdict, mgenedict)
print prevlen - len(mpairsdict), " mutex pairs removed by same-segment mutual exclusivity filter."
print len(mpairsdict), " mutex pairs found in ", time.time() - t
return mpairsdict, mgenedict
def calc_Network(pairsdict, genesdict, geneToCases, local_edge_bet, pair_filename, gene_filename, weight=None):
pairsdict_Network = pairsdict.copy()
genesdict_Network = {}
for gene in genesdict:
genesdict_Network[gene] = {}
G = nx.Graph()
for pair in pairsdict_Network:
if weight:
G.add_edge(*tuple(pair), weight=pairsdict_Network[pair][weight])
# print "weight is ", pairsdict_Network[pair][weight]
else:
G.add_edge(*tuple(pair))
t0 = time.time()
# print G
# print
node_bet_cent = nx.algorithms.centrality.betweenness_centrality(G, weight='weight')
node_close_cent = nx.algorithms.centrality.closeness_centrality(G, distance='weight')
node_clust_coef = nx.algorithms.clustering(G, weight='weight')
edge_bet_cent = nx.algorithms.centrality.edge_betweenness_centrality(G, weight='weight')
print "Network attributes calc'ed in ", time.time() - t0
for gene in genesdict_Network:
genesdict_Network[gene]['Gene'] = gene
genesdict_Network[gene]['MutationFrequency'] = len(geneToCases[gene])
genesdict_Network[gene]['NumPairs'] = len(genesdict[gene] if gene in genesdict else [])
genesdict_Network[gene]['NodeBetweennessCentrality'] = node_bet_cent[gene]
genesdict_Network[gene]['NodeClosenessCentrality'] = node_close_cent[gene]
genesdict_Network[gene]['NodeClusteringCoefficient'] = node_clust_coef[gene]
numpairs = 0
t = time.time()
for pair in pairsdict_Network:
gene0, gene1 = tuple(pair)
# print "Edge bet cent", edge_bet_cent
# print "Pair is ", pair
# print "Tuple pair is ", tuple(pair)
#print edge_bet_cent[tuple(pair)]
try :
pairsdict_Network[pair]['TotalEdgeBetweennessCentrality'] = edge_bet_cent[(gene1, gene0)]
except KeyError:
pairsdict_Network[pair]['TotalEdgeBetweennessCentrality'] = edge_bet_cent[(gene0, gene1)]
pairsdict_Network[pair]['AverageNodeClosenessCentrality'] = (node_close_cent[gene0] + node_close_cent[gene1]) / 2.0
pairsdict_Network[pair]['AverageNodeClusteringCoefficient'] = (node_clust_coef[gene0] + node_clust_coef[gene1]) / 2.0
# pairsdict_Network[pair]['HarmonicNodeClosenessCentrality'] = math.sqrt(node_close_cent[gene0] * node_close_cent[gene1]))
# pairsdict_Network[pair]['NumTriplets'] = len(nx.common_neighbors(G, *tuple(pair)))
# Local Edge Betweenness Centrality
if local_edge_bet:
# Get subgraph
t1 = time.time()
neighbors0 = set([neighbor for neighbor in G.neighbors(gene0)])
neighbors1 = set([neighbor for neighbor in G.neighbors(gene1)])
neighbors = set.union(neighbors0, neighbors1)
S = G.subgraph(neighbors)
# get the edge betweenness centrality
local_edge_bet_cent = nx.algorithms.centrality.edge_betweenness_centrality(S)
try:
pairsdict_Network[pair]['LocalEdgeBetweennessCentrality'] = local_edge_bet_cent[(gene0, gene1)]
except KeyError:
pairsdict_Network[pair]['LocalEdgeBetweennessCentrality'] = local_edge_bet_cent[(gene1, gene0)]
print "Local edge calculated in ", time.time() - t1
numpairs += 1
# print numpairs, "Number of pairs calculated in ", time.time() - t
writeanydict(pairsdict_Network, pair_filename)
writeanydict(genesdict_Network, gene_filename)
# print "Network calculated in ", time.time() - t
print "Network pairs written to ", pair_filename
print "Network genes written to ", gene_filename
# print "Network pairs written to " + file_prefix + "_Networkpairs.tsv"
# print "Network genes written to " + file_prefix + "_Networkgenes.tsv"
def complete_cooccurpairs(numCases, geneToCases, patientToGenes, genepairs, cprob, minCooccur,
cooccur_distance_threshold, min_cooccurrence_ratio, parallel_compute_number,
filter_cooccur_same_segment, fcss_cratiothresh, fcss_mutfreqdiffratiothresh,
fcss_coveragethresh, fcss_probabilitythresh, perm_matrices):
t1 = time.time()
if perm_matrices:
cpairsdict, cgenedict = perm_matrices.complete_cooccurpairs(genepairs, p=cprob, minCooccur=minCooccur,
parallel_compute_number=parallel_compute_number,
min_cooccurrence_ratio=min_cooccurrence_ratio)
else:
if parallel_compute_number:
cpairsdict, cgenedict = pac.parallel_compute_new(cooccurpairs, [numCases, geneToCases, patientToGenes, genepairs, cprob, minCooccur,
True, cooccur_distance_threshold, min_cooccurrence_ratio],
list(genepairs), 3, pac.partition_inputs, {0: pac.combine_dictionaries},
number=parallel_compute_number,
procnumber=parallel_compute_number)
cgenedict = edg.get_gene_dict(cpairsdict)
else:
cpairsdict, cgenedict = cooccurpairs(numCases, geneToCases, patientToGenes, genepairs, p=cprob, minCooccur=minCooccur,
compute_prob=True, cooccur_distance_threshold=cooccur_distance_threshold,
min_cooccurrence_ratio=min_cooccurrence_ratio)
if filter_cooccur_same_segment:
prevlen = len(cpairsdict)
cpairsdict, cgenedict = filter_cooccur_samesegment(cpairsdict, cgenedict, fcss_cratiothresh, fcss_mutfreqdiffratiothresh, fcss_coveragethresh,
fcss_probabilitythresh)
print prevlen - len(cpairsdict), " cooccur pairs removed by same-segment cooccur filter"
t2 = time.time()
print len(cpairsdict), " cooccurring pairs found in ", t2 - t1
return cpairsdict, cgenedict
def remove_extra_triplets(Triplets):
new_Triplets = []
gene_sets = set()
for Triplet in Triplets:
gene_set = frozenset(Triplet.genes)
if gene_set not in gene_sets:
gene_sets.add(gene_set)
new_Triplets.append(Triplet)
return new_Triplets
def sort_triplets_by_type(Triplets):
Triplet_dict = {}
for Triplet in Triplets:
type = Triplet.type
if type not in Triplet_dict:
Triplet_dict[type] = []
Triplet_dict[type].append(Triplet)
return Triplet_dict
def get_parser():
# Parse arguments
import argparse
description = 'Given an input number of samples n, and probability of mutual exclusivity p, ' \
'plots the number of mutations that each sample' \
'must have in order to reach that probability p.'
parser = argparse.ArgumentParser(description=description)
# General parameters
parser.add_argument('-m', '--mutation_matrix', default=None,
help='File name for mutation data.')
parser.add_argument('-o', '--output_prefix', default=None,
help='Output path prefix (TSV format). Otherwise just prints.')
parser.add_argument('-mf', '--min_freq', type=int, default=0,
help='Minimum gene mutation frequency.')
parser.add_argument('-mperc', '--min_percentile', type=float, default=0)
parser.add_argument('-tp', '--top_percentile', type=float, default=100,
help='Limit to this percentage of mutations of greatest abundance.')
parser.add_argument('-tn', '--top_number', type=int, default=0,
help='Limit to this number of mutations of greatest abundance.')
parser.add_argument('-pf', '--patient_file', default=None,
help='File of patients to be included (optional).')
parser.add_argument('-gf', '--gene_file', default=None,
help='File of genes to be included (optional).')
parser.add_argument('-pbf', '--patient_blacklist_file', default=None,
help='File of patients to be excluded (optional).')
parser.add_argument('-gbf', '--gene_blacklist_file', default=None,
help='File of genes to be excluded (optional).')
parser.add_argument('-gl1', '--gene_list_1', default=None,
help='First sets of genes to draw from')
parser.add_argument('-gl2', '--gene_list_2', default=None,
help='Second set of genes to draw from')
parser.add_argument('-tmf', '--test_minFreq', type=int, default=0,
help='Minimum frequency of genes to test pairs on')
#
# parser.add_argument('-s', '--set_size', type=int, default=2, help='Number of genes per set')
# parser.add_argument('-t', '--type', default='m',
# help='Use m for mutual exclusivity, c for cooccuring')
parser.add_argument('-mo', '--max_overlaps', type=int, default=400,
help='Maximum allowed number of overlapping mutations per mutually exclusive set')
parser.add_argument('-mc', '--min_cooccur', type=int, default=1,
help='Minimum number of cooccurrences per cooccuring set')
parser.add_argument('-mcr', '--min_cooccurrence_ratio', type=float, default=0.0,
help='The minimum cooccurrence ratio for a set to be deemed significant.')
parser.add_argument('-cdt', '--cooccur_distance_threshold', type=float, default=None,
help='The maximum distance between two cooccuring genes to be deemed significant.')
parser.add_argument('-mp', '--mprob', type=float, default=0.05,
help='Significance Threshold for mutual exclusivity.')
parser.add_argument('-cp', '--cprob', type=float, default=0.05,
help='Significance Threshold for mutual exclusivity.')
parser.add_argument('-mdf', '--mdictfile', default=None, help='Mutual Exclusivity pair file')
parser.add_argument('-cdf', '--cdictfile', default=None, help='Cooccurring pair file')
parser.add_argument('-pcn', '--parallel_compute_number', default=None, type=int, help='Number of parallel computations'
'to use.')
parser.add_argument('-fcoding', '--filter_coding', type=int, default=0, help='Filter only by those genes that do code.')
parser.add_argument('-fmgl', '--filter_mutex_gain_loss', type=int, default=1, help='Filter the same-gene gainloss mutual exclusivity')
parser.add_argument('-fmss', '--filter_mutex_same_segment', type=int, default=0, help='Pairs with gain and loss filtered.')
parser.add_argument('-fcss', '--filter_cooccur_same_segment', type=int, default=0, help='Pairs filtered as below.')
parser.add_argument('-fcss_rt', '--fcss_cratiothresh', type=float, default=0.9, help='Maximum ratio for cooccurring pairs,'
'which are probably the same at this point')
parser.add_argument('-fcss_mfdrt', '--fcss_mutfreqdiffratiothresh', type=float, default=1, help='Maximum mutation frequency'
'difference ratio for cooccurring pairs,'
'which are probably the same at this point')
parser.add_argument('-fcss_mfdt', '--fcss_mutfreqdiffthresh', type=float, default=20, help='Maximum mutation frequency difference.')
parser.add_argument('-fcss_ct', '--fcss_coveragethresh', type=float, default=50, help='Minimum coverage for cooccurring pairs,'
'which are probably the same at this point')
parser.add_argument('-fcss_pt', '--fcss_probabilitythresh', type=float, default=1e-20, help='Maximum ratio for cooccurring pairs,'
'which are probably the same at this point')
parser.add_argument('-bgbp', '--bin_genes_by_pairs', default=False, help='Bin the genes by the pairs in a second iteration.')
parser.add_argument('-rpt', '--ridiculous_pvalue_thresh', type=float, default=0, help="Filter ridiculous pvalues")
parser.add_argument('-fc', '--filter_cooccur', default=False, help='Filter cooccurring pairs')
parser.add_argument('-ud', '--use_downstream', default=True, help='Use the cooccurring pairs downstream')
parser.add_argument('-r_p', '--ratioperc', type=float, default=50, help='Cooccurrence Ratio Percentile')
parser.add_argument('-s_p', '--scoreperc', type=float, default=70, help='Set Score Percentile')
parser.add_argument('-c_p', '--coverageperc', type=float, default=30, help='Coverage Percentile')
parser.add_argument('-cs_p', '--combscoreperc', type=float, default=0.0, help='Combined Score Percentile')
parser.add_argument('-leb', '--local_edge_bet', default=None, help='Calculate the local edge betweenness.')
parser.add_argument('-gt', '--group_type', default='', help='Type of group to find')
parser.add_argument('-pt', '--pair_type', default=None, help='Type of pair to limit to')
parser.add_argument('-ctst', '--calc_triple_stats', default=True, help='Calculate the cooccurrence ratio and overlap'
'and coverage of Triplet.')
parser.add_argument('-ctsc', '--calc_triple_scores', default=True, help='Calculate the set score, etc. of Triplet.')
parser.add_argument('-om', '--only_mixed', default=False, help="Only search for mixed triplets.")
parser.add_argument('-js', '--just_sets', type=int, default=0, help='Just find the possible cooccurring sets,'
'without checking for significance')
parser.add_argument('-pd', '--plot_distribution', type=int, default=0,
help='Plot distribution of mutation frequencies '
'with this number of bins before running')
parser.add_argument('-ppd', '--plot_patient_distribution', type=int, default=0,
help='Plot distribution of mutation number'
'per gene '
'with this number of bins before running')
parser.add_argument('-plf', '--pair_list_file', default=None, help='File from which to load pair lists.')
parser.add_argument('-upm', '--use_perm_matrices', type=int, default=0)
parser.add_argument('-pmd', '--perm_matrix_directory', default=None)
parser.add_argument('-npm', '--num_permutations', default=100, type=int)
parser.add_argument('-q', '--Q', type=int, default=1)
parser.add_argument('-bpm', '--binary_perm_method', type=int, default=0)
parser.add_argument('-wpm', '--write_matrices', type=int, default=0)
return parser
def main():
run(get_parser().parse_args(sys.argv[1:]))
def run(args):
tstart = time.time()
# ------------------------------------------------------------------------------------------------------------
# Turn command line arguments to shorter variable handles
# ------------------------------------------------------------------------------------------------------------
mdictfile = args.mdictfile