Skip to content

The pytorch implementation of RetinexDIP, a unified zero-reference deep framework for low-light enhancement.

License

Notifications You must be signed in to change notification settings

lujulia/RetinexDIP_fixed

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

What is different between this fixed version and the original RetinexDIP?

(1) providing applications on both images and videos.

python Retinexdip_modify.py --input data/test --result ./result

RetinexDIP

The pytorch implementation of RetinexDIP: A Unified Deep Framework for Low-light Image Enhancement.

Z. Zhao, B. Xiong, L. Wang, Q. Ou, L. Yu and F. Kuang, "RetinexDIP: A Unified Deep Framework for Low-light Image Enhancement," in IEEE Transactions on Circuits and Systems for Video Technology, doi: 10.1109/TCSVT.2021.3073371.

Install

  • scipy==1.2.1
  • numpy==1.19.4
  • opencv-python==4.1.1
  • Pillow==8.1.2
  • torch==1.2.0
  • torchvision==0.4.0

Files Structure

├─data │ ├─test ├─net ├─output │ ├─illumination │ └─reflection ├─result └─utils

Dataset

  • DICM
  • ExDark
  • LIME
  • NASA
  • VV
  • Fusion, X. Fu, D. Zeng, Y. Huang, Y. Liao, X. Ding, and J. Paisley, ”A fusion-based enhancing method for weakly illuminated images,” Signal Processing, vol. 129, pp. 82-96, 2016.
  • NPE, S. Wang, J. Zheng, H. Hu, and B. Li, ”Naturalness preserved enhancement algorithm for non-uniform illumination images,” IEEE Transactions on Image Processing, vol. 22, pp. 3538-3548, 2013

Experiments

python Retinexdip.py --input data/test --result ./result

Before running the code, you must assure that every dataset is included in the input root directory. For example, these datasets should be included in the "./data/test":

datasets = ['DICM', 'ExDark', 'Fusion', 'LIME', 'NPEA', 'Nasa', 'VV']

Explanations for some hyperparameters:

  • input_depth This value could affect the performance. 3 is ok for natural image, if your images are extremely dark, you may consider 8 for the value.

  • flag

    This parameter from the function named $get_enhanced$ can be set as $True$ and $False$. If the input image is extremely dark, setting the flag as True can produce promising result.

About

The pytorch implementation of RetinexDIP, a unified zero-reference deep framework for low-light enhancement.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%