-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscriminator_model.py
60 lines (47 loc) · 1.61 KB
/
discriminator_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from turtle import forward
from zipfile import LargeZipFile
import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self, in_channels, out_channels, stride) -> None:
super().__init__()
self.conv = nn.Sequential(
# Reflect helps to reduce artifacts
nn.Conv2d(in_channels,out_channels, 4, stride, 1, bias=True, padding_mode="reflect"),
nn.InstanceNorm2d(out_channels),
nn.LeakyReLU(0.2)
)
def forward(self, x):
return self.conv(x)
class Discriminator(nn.Module):
def __init__(self, in_channels=3, features=[64,128,256,512]) -> None:
super().__init__()
self.initial = nn.Sequential(
nn.Conv2d(
in_channels,
features[0],
kernel_size=4,
stride=2,
padding=1,
padding_mode="reflect"
),
nn.LeakyReLU(0.2)
)
layers = []
in_channels = features[0]
for feature in features[1:]:
layers.append(Block(in_channels, feature, stride=1 if feature==features[-1] else 2))
in_channels=feature
layers.append(nn.Conv2d(in_channels,1,kernel_size=4, stride=1, padding=1, padding_mode='reflect'))
self.model=nn.Sequential(*layers)
def forward(self,x):
x = self.initial(x)
return torch.sigmoid(self.model(x))
def test():
x=torch.randn((1,3,256,256))
model = Discriminator(in_channels=3)
preds = model(x)
print(model)
print(preds.shape)
if __name__ == "__main__":
test()