-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUN_parse.py
237 lines (216 loc) · 7.88 KB
/
UN_parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import requests
from bs4 import BeautifulSoup
import pandas as pd
import time
from multiprocessing import Process, Manager
import pycountry_convert as pc
# Time in one parallel - 5972.65446305275 ~ 90 mins
# Time in 8 parallels - 1153.8270535469055 ~ 19 mins
STEP = 50
OUTPUT_FILE_NAME = "UNResult.csv"
START_DATE = 1991
END_DATE = 2022
NUMBER_OF_PARALLELS = 8
def get_ids_links(page_number, year):
"""
Functions get ids of resolutions from main page from source
:param page_number: number of page
:param year: current year
:return: list of resolutions ids
"""
list_of_ids_links = list()
resp = requests.get(
url=f"https://digitallibrary.un.org/search?ln=en&c=Voting+Data&jrec={page_number}&fct__3={year}&cc=Voting+Data&fct__9=Vote&fct__9=Vote"
)
soup = BeautifulSoup(resp.content, "lxml")
records = soup.find_all("div", class_="moreinfo")
for record in records:
voting_id = record.find("a", class_="moreinfo")
list_of_ids_links.append(voting_id["href"])
return list_of_ids_links
def find_info(records, record_name):
"""
Function finds information about specific field
:param records: piece of HTML page
:param record_name: str with specific field
:return: str with needed data
"""
for record in records:
record = record.find_all("span")
if record[0].text == record_name:
return record[1].text
def date_handler(date):
"""
Function cut off 1981 year and other waste dates
:param date: str with date
:return: bool indication
"""
try:
if date[0:4] != "1981":
return True
else:
return False
except TypeError:
return False
def transform_country_name(name_list):
"""
Function to deal with edge cases in country name
:param name_list: list of country name
:return: list with correct country name
"""
result_lst = list()
for name in name_list:
if name[0] == "(":
result_name = name[2:].lower()
result_name = name[:2] + result_name
else:
result_name = name[1:].lower()
result_name = name[0] + result_name
result_lst.append(result_name)
return result_lst
def country_rename(country):
"""
Function to clean up some countries name
:param country: str with name of country
:return: str name of country
"""
if "Iran" in country:
return "Iran"
elif country == "Republic Of Korea":
return "South Korea"
elif country == "Democratic People's Republic Of Korea":
return "North Korea"
elif "Bosnia" in country:
return "Bosnia and Herzegovina"
elif "Moldova" in country:
return "Republic of Moldova"
elif country == "Democratic Republic Of The Congo":
return "Democratic Republic of the Congo"
elif country == "United Republic Of Tanzania":
return "United Republic of Tanzania"
elif country == "Cote D'ivoire":
return "Ivory Coast"
elif country == "Antigua And Barbuda":
return "Antigua and Barbuda"
elif country == "Trinidad And Tobago":
return "Trinidad and Tobago"
elif country == "Guinea-bissau":
return "Guinea-Bissau"
elif country == "Czechia":
return "Czech Republic"
else:
return country
def get_page_info(link_id):
"""
Function gets id of resolution, make GET request and parse HTML page to extract needed
information
:param link_id: str id of resolution
:return: list of dicts
"""
countries_data = list()
page_url = "https://digitallibrary.un.org" + link_id
resp = requests.get(
url=page_url
)
soup = BeautifulSoup(resp.content, "lxml")
metadata = soup.find_all("div", class_="metadata-row")
title = find_info(metadata, "Title")
resolution = find_info(metadata, "Resolution")
vote_date = find_info(metadata, "Vote date")
countries = metadata[-2].find_all("span", class_="value col-xs-12 col-sm-9 col-md-10")[-1]
for br in countries.childGenerator():
if not date_handler(vote_date):
break
if not str(br) == "<br/>":
country = str(br)
vote_results = country.split(" ")
vote_results = [x for x in vote_results if x]
if len(vote_results[0]) != 1:
vote_results = transform_country_name(vote_results)
data = {"country": " ".join(vote_results),
"vote result": "NV",
"title": title,
"vote date": vote_date[0:4],
"resolution": resolution}
else:
vote_result = vote_results[0]
vote_results = transform_country_name(vote_results[1:])
data = {"country": " ".join(vote_results),
"vote result": vote_result,
"title": title,
"vote date": vote_date[0:4],
"resolution": resolution}
data["country"] = country_rename(data["country"])
try:
pc.country_name_to_country_alpha2(data["country"], cn_name_format="default")
countries_data.append(data)
except KeyError:
continue
return countries_data
def get_max_page_number(year):
"""
Function get the max number of pages with resolutions for current
year
:param year: int value of year for which run function
:return: int max number of pages
"""
number_of_pages = 0
resp = requests.get(
url=f"https://digitallibrary.un.org/search?ln=en&c=Voting+Data&jrec=1&fct__3={year}&cc=Voting+Data&fct__9=Vote&fct__9=Vote"
)
soup = BeautifulSoup(resp.content, "lxml")
number_info = soup.find_all("div", class_="checkbox")
for record in number_info:
if record.find_all("span")[0].text == "Vote":
number_of_pages = int(record.find_all("span")[1].text)
break
return number_of_pages
def save_to_csv(countries_data):
"""
Function saves list of dicts to .csv file
:param countries_data: list of dicts
:return: None
"""
df = pd.DataFrame(countries_data)
df = df.dropna()
df.to_csv(OUTPUT_FILE_NAME, index=False)
def data_acquisition(year_list, final_list):
"""
Function which perform acquisition. Will be passed to Thread
:param year_list: List of years from which take data
:param final_list: List where to put result
:return: None
"""
result_list = list()
for year in year_list:
loc_start = time.time()
max_page = get_max_page_number(year)
limit = max_page // STEP + 1
for i in range(limit):
ids_links_lst = get_ids_links(STEP * i + 1, year)
for link in ids_links_lst:
data_list = get_page_info(link)
result_list.extend(data_list)
loc_end = time.time()
print(f"Year - {year}, Time - {loc_end - loc_start}")
final_list.append(result_list)
if __name__ == "__main__":
"""
Start the acquisition process in 8 Threads
"""
gl_start = time.time()
year_list = list(range(START_DATE, END_DATE + 1))
limit = len(year_list) // NUMBER_OF_PARALLELS
procs = []
manager = Manager()
final_list = manager.list()
for i in range(NUMBER_OF_PARALLELS):
proc = Process(target=data_acquisition, args=(year_list[i*limit:limit*(i+1)], final_list))
procs.append(proc)
proc.start()
for proc in procs:
proc.join()
final_list = [item for sublist in final_list for item in sublist]
save_to_csv(final_list)
gl_end = time.time()
print(f"The whole acquisition - {gl_end-gl_start}")