|
| 1 | +import os |
| 2 | +import cv2 |
| 3 | +import random |
| 4 | +import pandas as pd |
| 5 | +import numpy as np |
| 6 | +import torch.utils.data as data |
| 7 | +import torch |
| 8 | +from .tool import randomCrop, rotate, lee_filter, object_crop, getMaskImg |
| 9 | + |
| 10 | +def read_clean(path, file, predicted=False): |
| 11 | + ''' |
| 12 | + train and test prepare |
| 13 | + return: |
| 14 | + full_img_tr: numpy |
| 15 | + data['is_iceberg']: numpy |
| 16 | + list(data['id']): list |
| 17 | + ''' |
| 18 | + data = pd.read_json(os.path.join(path, file)) |
| 19 | + # data = data[data['mask_size'] < 99.0001] |
| 20 | + |
| 21 | + band_1_tr = np.concatenate([im for im in data['band_1']]).reshape(-1, 75, 75) |
| 22 | + band_2_tr = np.concatenate([im for im in data['band_2']]).reshape(-1, 75, 75) |
| 23 | + # band_3_tr = (band_1_tr**2 + band_2_tr**2) / 2 |
| 24 | + # full_img_tr = np.stack([band_1_tr, band_2_tr, band_3_tr], axis=1) # 1604,2,75,75 |
| 25 | + full_img_tr = np.stack([band_1_tr, band_2_tr], axis=1) # 1604,2,75,75 |
| 26 | + full_img_tr = full_img_tr.transpose(0,2,3,1) |
| 27 | + |
| 28 | + inc_angle = data['inc_angle'].values |
| 29 | + inc_angle[np.isnan(inc_angle)] = 0#39.26 #replace nan with mean of inc_angle |
| 30 | + # inc_angle = (inc_angle-39.26)*10 # normalise |
| 31 | + |
| 32 | + if not predicted: |
| 33 | + return full_img_tr, data['is_iceberg'].values, inc_angle |
| 34 | + else: |
| 35 | + return full_img_tr, list(data['id']), inc_angle |
| 36 | + |
| 37 | +class train_cross(): |
| 38 | + ''' |
| 39 | + N folder cross verify |
| 40 | + ''' |
| 41 | + def __init__(self, train, label, inc_angle, num): |
| 42 | + ''' |
| 43 | + num: split set number |
| 44 | + ''' |
| 45 | + self.length = train.shape[0] |
| 46 | + self.num = num |
| 47 | + self.data = train |
| 48 | + self.label = label |
| 49 | + self.inc_angle = inc_angle |
| 50 | + self.image_list = list(range(self.length)) |
| 51 | + random.shuffle(self.image_list) # replace |
| 52 | + |
| 53 | + def getset(self, ids): |
| 54 | + span = self.length / self.num |
| 55 | + first_index = int(ids*span) |
| 56 | + |
| 57 | + if ids is not self.num-1: |
| 58 | + test_list = self.image_list[first_index:int((ids+1)*span)] |
| 59 | + else: |
| 60 | + test_list = self.image_list[first_index:] |
| 61 | + |
| 62 | + image_test = self.data[test_list] |
| 63 | + lab_test = self.label[test_list] |
| 64 | + inc_test = self.inc_angle[test_list] |
| 65 | + |
| 66 | + train_list = list(set(self.image_list) - set(test_list)) |
| 67 | + image_train = self.data[train_list] |
| 68 | + lab_train = self.label[train_list] |
| 69 | + inc_train = self.inc_angle[train_list] |
| 70 | + |
| 71 | + return image_train, lab_train, inc_train, image_test, lab_test, inc_test |
| 72 | + |
| 73 | +class DataSet(data.Dataset): |
| 74 | + def __init__(self, datap, labelp, incp, train, predicted=False): |
| 75 | + self.image_size = 40 #20 #40 #75 #40 #75 |
| 76 | + self.data = datap |
| 77 | + self.incp = incp |
| 78 | + self.predicted = predicted |
| 79 | + self.length = datap.shape[0] |
| 80 | + self.train = train |
| 81 | + if(not predicted): |
| 82 | + self.label = labelp |
| 83 | + self.id = [] |
| 84 | + else: |
| 85 | + self.label = [] |
| 86 | + self.id = labelp |
| 87 | + |
| 88 | + def __getitem__(self, idx): |
| 89 | + img = self.data[idx] # WxHxC |
| 90 | + |
| 91 | + # substract min value, for resnet18 |
| 92 | + # img -= img.min() |
| 93 | + |
| 94 | + # take the opposite |
| 95 | + # img = 0 - img |
| 96 | + |
| 97 | + # speckle filter |
| 98 | + # img = lee_filter(img) |
| 99 | + |
| 100 | + # pca whitening https://github.com/RobotLiu2015/machine-learning/tree/master/PCA%20and%20Whitening |
| 101 | + |
| 102 | + if self.train: |
| 103 | + |
| 104 | + # if random.random() < 0.5: |
| 105 | + # # add speckle noise(https://stackoverflow.com/questions/22937589/how-to-add-noise-gaussian-salt-and-pepper-etc-to-image-in-python-with-opencv) |
| 106 | + # row,col,ch = img.shape |
| 107 | + # gauss = np.random.randn(row,col,ch) |
| 108 | + # gauss = gauss.reshape(row,col,ch) |
| 109 | + # noisy = img + img * gauss |
| 110 | + |
| 111 | + # if random.random() < 0.5: |
| 112 | + # # salter and pepper |
| 113 | + # row,col,ch = img.shape |
| 114 | + # s_vs_p = 0.5 |
| 115 | + # amount = 0.004 |
| 116 | + # out = np.copy(img) |
| 117 | + # # Salt mode |
| 118 | + # num_salt = np.ceil(amount * img.size * s_vs_p) |
| 119 | + # coords = [np.random.randint(0, i - 1, int(num_salt)) |
| 120 | + # for i in img.shape] |
| 121 | + # out[coords] = 1 |
| 122 | + |
| 123 | + # # Pepper mode |
| 124 | + # num_pepper = np.ceil(amount* img.size * (1. - s_vs_p)) |
| 125 | + # coords = [np.random.randint(0, i - 1, int(num_pepper)) |
| 126 | + # for i in img.shape] |
| 127 | + # out[coords] = 0 |
| 128 | + # img = out |
| 129 | + |
| 130 | + if random.random() < 0.5: |
| 131 | + img = np.fliplr(img) |
| 132 | + |
| 133 | + # if random.random() < 0.5: |
| 134 | + # angle = random.uniform(-20,20) # 20 |
| 135 | + # img = rotate(img, angle) |
| 136 | + |
| 137 | + if random.random() < 0.3: |
| 138 | + img = cv2.resize(img, (85,85)) |
| 139 | + img = randomCrop(img, 75, 75) |
| 140 | + elif random.random() < 0.6: |
| 141 | + img = np.pad(img, ((7,7),(7,7),(0,0)), 'reflect') |
| 142 | + img = randomCrop(img, 75, 75) |
| 143 | + else: |
| 144 | + pass |
| 145 | + |
| 146 | + small = True |
| 147 | + if small: |
| 148 | + img, max_area = object_crop(img, self.train) |
| 149 | + # print(img.shape) |
| 150 | + img = cv2.resize(img, (self.image_size, self.image_size)) |
| 151 | + # mask = getMaskImg(img) |
| 152 | + # mask = cv2.resize(mask, (s, s), interpolation=cv2.INTER_NEAREST) |
| 153 | + |
| 154 | + img = img.transpose(2,0,1) |
| 155 | + img = torch.from_numpy(img).float() |
| 156 | + |
| 157 | + # inc = torch.LongTensor(mask) |
| 158 | + inc = torch.Tensor([self.incp[idx]]) |
| 159 | + # inc = torch.Tensor([max_area]) |
| 160 | + if not self.predicted: |
| 161 | + return img, self.label[idx], inc |
| 162 | + else: |
| 163 | + return img, self.id[idx], inc |
| 164 | + |
| 165 | + def __len__(self): |
| 166 | + return self.length |
| 167 | + |
| 168 | + |
| 169 | +if __name__ == '__main__': |
| 170 | + import matplotlib.pyplot as plt |
| 171 | + from torchvision import transforms |
| 172 | + print('dataset main run') |
| 173 | + transform = transforms.Compose([ |
| 174 | + transforms.ToTensor() # simply typeas float and divide by 255 |
| 175 | + ]) |
| 176 | + dataset = DataSet(path = '/home/lxg/codedata/ice', |
| 177 | + file = 'train_train.json', |
| 178 | + train = True, |
| 179 | + predicted=True) |
| 180 | + for idx in range(len(dataset)): |
| 181 | + img, label = dataset[idx] |
| 182 | + img = img.numpy() |
| 183 | + print('idx:', idx, 'label:', label, 'shape:', img.shape) |
| 184 | + f, (ax1, ax2) = plt.subplots(1,2) |
| 185 | + ax1.imshow(img[0]) |
| 186 | + ax2.imshow(img[1]) |
| 187 | + f.suptitle(str(label)) |
| 188 | + # plt.show() |
| 189 | + |
| 190 | + c,w,h = img.shape |
| 191 | + # img = img.transpose(1,2,0) |
| 192 | + # filter_img = img |
| 193 | + filter_img = lee_filter(img) |
| 194 | + print((filter_img[0] == img[0]).sum()) |
| 195 | + # img = img.transpose(2,1,0) |
| 196 | + f, (ax1, ax2) = plt.subplots(1,2) |
| 197 | + ax1.imshow(filter_img[0]) |
| 198 | + ax2.imshow(filter_img[1]) |
| 199 | + f.suptitle('filter_'+str(label)) |
| 200 | + plt.show() |
| 201 | + |
| 202 | + |
0 commit comments