-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathlasso.Rmd
163 lines (118 loc) · 2.92 KB
/
lasso.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
## L1 (lasso) regularization
See Tibshirani (1996) for the original paper, or Murphy PML (2012) for a nice
overview (watch for typos in depictions).
### Data Setup
```{r lasso-setup}
library(tidyverse)
set.seed(8675309)
N = 500
p = 10
X = scale(matrix(rnorm(N*p), ncol = p))
b = c(.5, -.5, .25, -.25, .125, -.125, rep(0, p - 6))
y = scale(X %*% b + rnorm(N, sd = .5))
lambda = .1
```
### Function
Coordinate descent function.
```{r lasso}
lasso <- function(
X, # model matrix
y, # target
lambda = .1, # penalty parameter
soft = TRUE, # soft vs. hard thresholding
tol = 1e-6, # tolerance
iter = 100, # number of max iterations
verbose = TRUE # print out iteration number
) {
# soft thresholding function
soft_thresh <- function(a, b) {
out = rep(0, length(a))
out[a > b] = a[a > b] - b
out[a < -b] = a[a < -b] + b
out
}
w = solve(crossprod(X) + diag(lambda, ncol(X))) %*% crossprod(X,y)
tol_curr = 1
J = ncol(X)
a = rep(0, J)
c_ = rep(0, J)
i = 1
while (tol < tol_curr && i < iter) {
w_old = w
a = colSums(X^2)
l = length(y)*lambda # for consistency with glmnet approach
c_ = sapply(1:J, function(j) sum( X[,j] * (y - X[,-j] %*% w_old[-j]) ))
if (soft) {
for (j in 1:J) {
w[j] = soft_thresh(c_[j]/a[j], l/a[j])
}
}
else {
w = w_old
w[c_< l & c_ > -l] = 0
}
tol_curr = crossprod(w - w_old)
i = i + 1
if (verbose && i%%10 == 0) message(i)
}
w
}
```
### Estimation
Note, if `lambda = 0`, i.e. no penalty, the result is the same as what you would get from the base R <span class="func" style = "">lm.fit</span>.
```{r lasso-est}
fit_soft = lasso(
X,
y,
lambda = lambda,
tol = 1e-12,
soft = TRUE
)
fit_hard = lasso(
X,
y,
lambda = lambda,
tol = 1e-12,
soft = FALSE
)
```
The <span class="pack" style = "">glmnet</span> approach is by default a mixture
of ridge and lasso penalties, setting `alpha = 1` reduces to lasso (`alpha = 0`
would be ridge). We set the lambda to a couple values while only wanting the one
set to the same lambda value as above (`s`).
```{r lasso-glmnet}
library(glmnet)
fit_glmnet = coef(
glmnet(
X,
y,
alpha = 1,
lambda = c(10, 1, lambda),
thresh = 1e-12,
intercept = FALSE
),
s = lambda
)
library(lassoshooting)
fit_ls = lassoshooting(
X = X,
y = y,
lambda = length(y) * lambda,
thr = 1e-12
)
```
### Comparison
We can now compare the coefficients of all our results.
```{r lasso-compare, echo=FALSE}
data.frame(
lm = coef(lm(y ~ . - 1, data.frame(X))),
lasso_soft = fit_soft,
lasso_hard = fit_hard,
lspack = fit_ls$coef,
glmnet = fit_glmnet[-1, 1],
truth = b
) %>%
kable_df()
```
### Source
Original code available at https://github.com/m-clark/Miscellaneous-R-Code/blob/master/ModelFitting/lasso.R