forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfutex.rs
260 lines (219 loc) · 7.65 KB
/
futex.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
use crate::cell::UnsafeCell;
use crate::sync::atomic::{
AtomicI32, AtomicUsize,
Ordering::{Acquire, Relaxed, Release},
};
use crate::sys::futex::{futex_wait, futex_wake, futex_wake_all};
use crate::time::Duration;
pub type MovableMutex = Mutex;
pub type MovableCondvar = Condvar;
pub struct Mutex {
/// 0: unlocked
/// 1: locked, no other threads waiting
/// 2: locked, and other threads waiting (contended)
futex: AtomicI32,
}
impl Mutex {
#[inline]
pub const fn new() -> Self {
Self { futex: AtomicI32::new(0) }
}
#[inline]
pub unsafe fn init(&mut self) {}
#[inline]
pub unsafe fn destroy(&self) {}
#[inline]
pub unsafe fn try_lock(&self) -> bool {
self.futex.compare_exchange(0, 1, Acquire, Relaxed).is_ok()
}
#[inline]
pub unsafe fn lock(&self) {
if self.futex.compare_exchange(0, 1, Acquire, Relaxed).is_err() {
self.lock_contended();
}
}
#[cold]
fn lock_contended(&self) {
// Spin first to speed things up if the lock is released quickly.
let mut state = self.spin();
// If it's unlocked now, attempt to take the lock
// without marking it as contended.
if state == 0 {
match self.futex.compare_exchange(0, 1, Acquire, Relaxed) {
Ok(_) => return, // Locked!
Err(s) => state = s,
}
}
loop {
// Put the lock in contended state.
// We avoid an unnecessary write if it as already set to 2,
// to be friendlier for the caches.
if state != 2 && self.futex.swap(2, Acquire) == 0 {
// We changed it from 0 to 2, so we just succesfully locked it.
return;
}
// Wait for the futex to change state, assuming it is still 2.
futex_wait(&self.futex, 2, None);
// Spin again after waking up.
state = self.spin();
}
}
fn spin(&self) -> i32 {
let mut spin = 100;
loop {
// We only use `load` (and not `swap` or `compare_exchange`)
// while spinning, to be easier on the caches.
let state = self.futex.load(Relaxed);
// We stop spinning when the mutex is unlocked (0),
// but also when it's contended (2).
if state != 1 || spin == 0 {
return state;
}
crate::hint::spin_loop();
spin -= 1;
}
}
#[inline]
pub unsafe fn unlock(&self) {
if self.futex.swap(0, Release) == 2 {
// We only wake up one thread. When that thread locks the mutex, it
// will mark the mutex as contended (2) (see lock_contended above),
// which makes sure that any other waiting threads will also be
// woken up eventually.
self.wake();
}
}
#[cold]
fn wake(&self) {
futex_wake(&self.futex);
}
}
pub struct Condvar {
// The value of this atomic is simply incremented on every notification.
// This is used by `.wait()` to not miss any notifications after
// unlocking the mutex and before waiting for notifications.
futex: AtomicI32,
}
impl Condvar {
#[inline]
pub const fn new() -> Self {
Self { futex: AtomicI32::new(0) }
}
#[inline]
pub unsafe fn init(&mut self) {}
#[inline]
pub unsafe fn destroy(&self) {}
// All the memory orderings here are `Relaxed`,
// because synchronization is done by unlocking and locking the mutex.
pub unsafe fn notify_one(&self) {
self.futex.fetch_add(1, Relaxed);
futex_wake(&self.futex);
}
pub unsafe fn notify_all(&self) {
self.futex.fetch_add(1, Relaxed);
futex_wake_all(&self.futex);
}
pub unsafe fn wait(&self, mutex: &Mutex) {
self.wait_optional_timeout(mutex, None);
}
pub unsafe fn wait_timeout(&self, mutex: &Mutex, timeout: Duration) -> bool {
self.wait_optional_timeout(mutex, Some(timeout))
}
unsafe fn wait_optional_timeout(&self, mutex: &Mutex, timeout: Option<Duration>) -> bool {
// Examine the notification counter _before_ we unlock the mutex.
let futex_value = self.futex.load(Relaxed);
// Unlock the mutex before going to sleep.
mutex.unlock();
// Wait, but only if there hasn't been any
// notification since we unlocked the mutex.
let r = futex_wait(&self.futex, futex_value, timeout);
// Lock the mutex again.
mutex.lock();
r
}
}
/// A reentrant mutex. Used by stdout().lock() and friends.
///
/// The 'owner' field tracks which thread has locked the mutex.
///
/// We use current_thread_unique_ptr() as the thread identifier,
/// which is just the address of a thread local variable.
///
/// If `owner` is set to the identifier of the current thread,
/// we assume the mutex is already locked and instead of locking it again,
/// we increment `lock_count`.
///
/// When unlocking, we decrement `lock_count`, and only unlock the mutex when
/// it reaches zero.
///
/// `lock_count` is protected by the mutex and only accessed by the thread that has
/// locked the mutex, so needs no synchronization.
///
/// `owner` can be checked by other threads that want to see if they already
/// hold the lock, so needs to be atomic. If it compares equal, we're on the
/// same thread that holds the mutex and memory access can use relaxed ordering
/// since we're not dealing with multiple threads. If it compares unequal,
/// synchronization is left to the mutex, making relaxed memory ordering for
/// the `owner` field fine in all cases.
pub struct ReentrantMutex {
mutex: Mutex,
owner: AtomicUsize,
lock_count: UnsafeCell<u32>,
}
unsafe impl Send for ReentrantMutex {}
unsafe impl Sync for ReentrantMutex {}
impl ReentrantMutex {
#[inline]
pub const unsafe fn uninitialized() -> Self {
Self { mutex: Mutex::new(), owner: AtomicUsize::new(0), lock_count: UnsafeCell::new(0) }
}
#[inline]
pub unsafe fn init(&self) {}
#[inline]
pub unsafe fn destroy(&self) {}
pub unsafe fn try_lock(&self) -> bool {
let this_thread = current_thread_unique_ptr();
if self.owner.load(Relaxed) == this_thread {
self.increment_lock_count();
true
} else if self.mutex.try_lock() {
self.owner.store(this_thread, Relaxed);
debug_assert_eq!(*self.lock_count.get(), 0);
*self.lock_count.get() = 1;
true
} else {
false
}
}
pub unsafe fn lock(&self) {
let this_thread = current_thread_unique_ptr();
if self.owner.load(Relaxed) == this_thread {
self.increment_lock_count();
} else {
self.mutex.lock();
self.owner.store(this_thread, Relaxed);
debug_assert_eq!(*self.lock_count.get(), 0);
*self.lock_count.get() = 1;
}
}
unsafe fn increment_lock_count(&self) {
*self.lock_count.get() = (*self.lock_count.get())
.checked_add(1)
.expect("lock count overflow in reentrant mutex");
}
pub unsafe fn unlock(&self) {
*self.lock_count.get() -= 1;
if *self.lock_count.get() == 0 {
self.owner.store(0, Relaxed);
self.mutex.unlock();
}
}
}
/// Get an address that is unique per running thread.
///
/// This can be used as a non-null usize-sized ID.
pub fn current_thread_unique_ptr() -> usize {
// Use a non-drop type to make sure it's still available during thread destruction.
thread_local! { static X: u8 = const { 0 } }
X.with(|x| <*const _>::addr(x))
}