forked from mackelab/neuralgbi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_guidance.yaml
59 lines (54 loc) · 1.69 KB
/
train_guidance.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
data_entity: two_moons
results_dir: "results/guidance/${data_entity}"
check_val_every_n_epochs: 5
num_worker: 12
max_epochs: 100
batch_size: 256
precision: 32 # 64: extended, 32: standard, 16: half
dataset:
train_file: "data/${data_entity}_10000.pt"
val_file: "data/${data_entity}_1000.pt"
n_target: 20
noise_std: 0.1 # how strong to noise the augmentations in x_target
model:
TimeEncoder:
enabled: True
input_dim: 512
output_dim: 512
activation_func: ELU
architecture: [512, 512,]
final_activation: ELU # Sigmoid only needed for cosine similarity -> otherwise null
ThetaEncoder:
output_dim: 128
architecture: [256]
activation_func: "ReLU"
final_activation: ReLU # Sigmoid only needed for cosine similarity -> otherwise null
SimulatorEncoder:
output_dim: 128
architecture: [256]
activation_func: "ReLU"
final_activation: ReLU # Sigmoid only needed for cosine similarity -> otherwise null
LatentMLP:
architecture: [256, 156, 128]
activation_func: "ReLU"
final_activation: Softplus # Sigmoid only needed for cosine similarity -> otherwise null
diffusion:
steps: 1000
time_repr_dim: ${model.TimeEncoder.input_dim} # sinusoidal position encoding dimensions
period_spread: 10000 # parameter for sinusoidal positional encoding
diffusion_schedule: "DDPMSchedule"
# Variance Preserving Schedule
VPSchedule:
beta_start: 0.0001
beta_end: 0.02
T: ${diffusion.steps}
beta_schedule_cls: "LinearSchedule"
DDPMSchedule:
beta_start: 0.0001
beta_end: 0.02
T: ${diffusion.steps}
beta_schedule_cls: "LinearSchedule"
optimizer:
name: AdamW
lr: 0.0001
weight_decay: 0.001