-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbustersAgents.py
211 lines (167 loc) · 7.05 KB
/
bustersAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from otherBustersAgents import *
"""
The other agents were moved to another file otherbustersAgents.py
"""
from qstate import QState
class QLearningAgent(BustersAgent):
#Initialization
def registerInitialState(self, gameState):
BustersAgent.registerInitialState(self, gameState)
self.distancer = Distancer(gameState.data.layout, False)
self.epsilon = 0.2
self.alpha = 0.1
self.discount = 0.8
self.actions = {"North":0, "East":1, "South":2, "West":3}
if os.path.exists("qtable.txt"):
self.table_file = open("qtable.txt", "r+")
self.q_table = self.readQtable()
else:
self.table_file = open("qtable.txt", "w+")
#"*** CHECK: NUMBER OF ROWS IN QTABLE DEPENDS ON THE NUMBER OF STATES ***"
self.initializeQtable(81)
def initializeQtable(self, nrows):
"Initialize qtable"
self.q_table = np.zeros((nrows,len(self.actions)))
def readQtable(self):
"Read qtable from disc"
table = self.table_file.readlines()
q_table = []
for i, line in enumerate(table):
row = line.split()
row = [float(x) for x in row]
q_table.append(row)
return q_table
def writeQtable(self):
"Write qtable to disc"
self.table_file.seek(0)
self.table_file.truncate()
for line in self.q_table:
for item in line:
self.table_file.write(str(item)+" ")
self.table_file.write("\n")
def printQtable(self):
"Print qtable"
for line in self.q_table:
print(line)
print("\n")
def __del__(self):
"Destructor. Invokation at the end of each episode"
self.writeQtable()
self.table_file.close()
def computePosition(self, state):
"""
Compute the row of the qtable for a given state.
"""
return state.id
def getQValue(self, state, action):
"""
Returns Q(state,action)
Should return 0.0 if we have never seen a state
or the Q node value otherwise
"""
position = self.computePosition(state)
action_column = self.actions[action]
return self.q_table[position][action_column]
def computeValueFromQValues(self, state):
"""
Returns max_action Q(state,action)
where the max is over legal actions. Note that if
there are no legal actions, which is the case at the
terminal state, you should return a value of 0.0.
"""
legalActions = state.getLegalPacmanActions()
if 'Stop' in legalActions: legalActions.remove("Stop")
if len(legalActions)==0:
return 0
return max(self.q_table[self.computePosition(state)])
def computeActionFromQValues(self, state):
"""
Compute the best action to take in a state. Note that if there
are no legal actions, which is the case at the terminal state,
you should return None.
"""
legalActions = state.getLegalPacmanActions()
if 'Stop' in legalActions: legalActions.remove("Stop")
if len(legalActions)==0:
return None
best_actions = [legalActions[0]]
best_value = self.getQValue(state, legalActions[0])
for action in legalActions:
value = self.getQValue(state, action)
if value == best_value:
best_actions.append(action)
if value > best_value:
best_actions = [action]
best_value = value
return random.choice(best_actions)
def getAction(self, state):
"""
Compute the action to take in the current state. With
probability self.epsilon, we should take a random action and
take the best policy action otherwise. Note that if there are
no legal actions, which is the case at the terminal state, you
should choose None as the action.
"""
qstate = QState(state)
# Pick Action
legalActions = state.getLegalPacmanActions()
if 'Stop' in legalActions: legalActions.remove("Stop")
action = None
if len(legalActions) == 0:
return action
flip = util.flipCoin(self.epsilon)
if flip:
return random.choice(legalActions)
return self.getPolicy(qstate)
def update(self, state, action, nextState, reward):
"""
The parent class calls this to observe a
state = action => nextState and reward transition.
You should do your Q-Value update here
Good Terminal state -> reward 1
Bad Terminal state -> reward -1
Otherwise -> reward 0
Q-Learning update:
if terminal_state:
Q(state,action) <- (1-self.alpha) Q(state,action) + self.alpha * (r + 0)
else:
Q(state,action) <- (1-self.alpha) Q(state,action) + self.alpha * (r + self.discount * max a' Q(nextState, a'))
"""
if state.isfinal():
action = random.choice(['North', 'South', 'East', 'West'])
q_value = (1-self.alpha)*self.getQValue(state,action) + self.alpha * (reward)
else:
bestAction = self.computeActionFromQValues(nextState)
if bestAction == None:
return
q_value = (1-self.alpha)*self.getQValue(state,action) + self.alpha * (reward + self.discount *self.getQValue(nextState, bestAction))
self.q_table[self.computePosition(state)][self.actions[action]] = q_value
self.writeQtable()
def getPolicy(self, state):
"Return the best action in the qtable for a given state"
return self.computeActionFromQValues(state)
def getValue(self, state):
"Return the highest q value for a given state"
return self.computeValueFromQValues(state)
def getReward(self, state, action, nextstate, gameState, nextGameState):
"Return the obtained reward"
if state.isfinal():
return gameState.getScore()*0.01
reward = 0
directions = {"North": 1, "South": -1, "East": 2, "West": -2, 'Stop':0}
dir = gameState.data.agentStates[0].getDirection()
next_dir = nextGameState.data.agentStates[0].getDirection()
if nextGameState.getDistanceNearestGhost(*nextGameState.getPacmanPosition())[0] - gameState.getDistanceNearestGhost(*gameState.getPacmanPosition())[0] < 0:
reward += 5
else:
reward -= 1
if directions[dir] == -directions[next_dir]:
reward -= 10
if state.countGhosts(gameState) - nextstate.countGhosts(nextGameState) != 0:
reward += 100
if nextGameState.getNumFood() < gameState.getNumFood():
reward += 20
return reward
def final(self, gameState):
state = QState(gameState)
#self.update(state, self.getAction(gameState), None, self.getReward(state, 'Stop', None, gameState, None))