conda create --name lightning-drag python=3.9 pip
conda activate lightning-drag
pip3 install -r requirements.txt
Download the following models and place them under ./checkpoints
- dreamshaper-8-inpainting (refer to IMPORTANT NOTES)
- lcm-lora-sdv1-5
- IP-Adapter
- sd-vae-ft-mse
- lightning-drag-sd15
Place the checkpoints as follows:
└── checkpoints
├── dreamshaper-8-inpainting
├── lcm-lora-sdv1-5
│ └── pytorch_lora_weights.safetensors
├── sd-vae-ft-ema
│ ├── config.json
│ ├── diffusion_pytorch_model.bin
│ └── diffusion_pytorch_model.safetensors
├── IP-Adapter/models
│ ├── image_encoder
│ └── ip-adapter_sd15.bin
└── lightning-drag-sd15
├── appearance_encoder
│ ├── config.json
│ └── diffusion_pytorch_model.safetensors
├── point_embedding
│ └── point_embedding.pt
└── lightning-drag-sd15-attn.bin
- Since
runwayml/stable-diffusion-inpainting
is no longer available, we replace the inpainting checkpoint withLykon/dreamshaper-8-inpainting
without retraining or finetuning. Although it works, the results may not look the same as the one in the paper. - To reproduce the results from the paper, you may need to replace the inpainting checkpoint with your own
stable-diffusion-inpainting
checkpoint.