-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
73 lines (60 loc) · 2.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import pandas as pd
from flask import Flask, render_template, request
# libraries for making count matrix and similarity matrix
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# define a function that creates similarity matrix
# if it doesn't exist
def create_sim():
data = pd.read_csv('data.csv')
# creating a count matrix
cv = CountVectorizer()
count_matrix = cv.fit_transform(data['comb'])
# creating a similarity score matrix
sim = cosine_similarity(count_matrix)
return data,sim
# defining a function that recommends 10 most similar movies
def rcmd(m):
m = m.lower()
# check if data and sim are already assigned
try:
data.head()
sim.shape
except:
data, sim = create_sim()
# check if the movie is in our database or not
if m not in data['movie_title'].unique():
return('This movie is not in our database.\nPlease check if you spelled it correct.')
else:
# getting the index of the movie in the dataframe
i = data.loc[data['movie_title']==m].index[0]
# fetching the row containing similarity scores of the movie
# from similarity matrix and enumerate it
lst = list(enumerate(sim[i]))
# sorting this list in decreasing order based on the similarity score
lst = sorted(lst, key = lambda x:x[1] ,reverse=True)
# taking top 1- movie scores
# not taking the first index since it is the same movie
lst = lst[1:11]
# making an empty list that will containg all 10 movie recommendations
l = []
for i in range(len(lst)):
a = lst[i][0]
l.append(data['movie_title'][a])
return l
app = Flask(__name__)
@app.route("/")
def home():
return render_template('home.html')
@app.route("/recommend")
def recommend():
movie = request.args.get('movie')
r = rcmd(movie)
movie = movie.upper()
if type(r)==type('string'):
return render_template('recommend.html',movie=movie,r=r,t='s')
else:
return render_template('recommend.html',movie=movie,r=r,t='l')
if __name__ == '__main__':
app.run()