forked from Netanelshoshan/freqAI-LSTM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExampleLSTMStrategy.py
279 lines (228 loc) · 13.1 KB
/
ExampleLSTMStrategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import logging
from functools import reduce
from typing import Dict
import numpy as np
import pandas as pd
import talib.abstract as ta
from pandas import DataFrame
from technical import qtpylib
from freqtrade.exchange.exchange_utils import *
from freqtrade.strategy import IStrategy, RealParameter
logger = logging.getLogger(__name__)
class ExampleLSTMStrategy(IStrategy):
"""
This is an example strategy that uses the LSTMRegressor model to predict the target score.
Use at your own risk.
This is a simple example strategy and should be used for educational purposes only.
"""
# Hyperspace parameters:
buy_params = {
"threshold_buy": 0.59453,
"w0": 0.54347,
"w1": 0.82226,
"w2": 0.56675,
"w3": 0.77918,
"w4": 0.98488,
"w5": 0.31368,
"w6": 0.75916,
"w7": 0.09226,
"w8": 0.85667,
}
sell_params = {
"threshold_sell": 0.80573,
}
# ROI table:
minimal_roi = {
"600": 0 # we let the model decide when to exit
}
# Stoploss:
stoploss = -1 # Were letting the model decide when to sell
# Trailing stop:
trailing_stop = True
trailing_stop_positive = 0.001
trailing_stop_positive_offset = 0.0139
trailing_only_offset_is_reached = True
timeframe = "1h"
can_short = True
use_exit_signal = True
process_only_new_candles = True
startup_candle_count = 20
threshold_buy = RealParameter(-1, 1, default=0, space='buy')
threshold_sell = RealParameter(-1, 1, default=0, space='sell')
# Weights for calculating the aggregate score - the sum of all weighted normalized indicators has to be 1!
w0 = RealParameter(0, 1, default=0.10, space='buy')
w1 = RealParameter(0, 1, default=0.15, space='buy')
w2 = RealParameter(0, 1, default=0.10, space='buy')
w3 = RealParameter(0, 1, default=0.15, space='buy')
w4 = RealParameter(0, 1, default=0.10, space='buy')
w5 = RealParameter(0, 1, default=0.10, space='buy')
w6 = RealParameter(0, 1, default=0.10, space='buy')
w7 = RealParameter(0, 1, default=0.05, space='buy')
w8 = RealParameter(0, 1, default=0.15, space='buy')
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
metadata: Dict, **kwargs):
dataframe["%-cci-period"] = ta.CCI(dataframe, timeperiod=20)
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=10)
dataframe["%-momentum-period"] = ta.MOM(dataframe, timeperiod=4)
dataframe['%-ma-period'] = ta.SMA(dataframe, timeperiod=10)
dataframe['%-macd-period'], dataframe['%-macdsignal-period'], dataframe['%-macdhist-period'] = ta.MACD(
dataframe['close'], slowperiod=12,
fastperiod=26)
dataframe['%-roc-period'] = ta.ROC(dataframe, timeperiod=2)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(dataframe), window=period, stds=2.2
)
dataframe["bb_lowerband-period"] = bollinger["lower"]
dataframe["bb_middleband-period"] = bollinger["mid"]
dataframe["bb_upperband-period"] = bollinger["upper"]
dataframe["%-bb_width-period"] = (
dataframe["bb_upperband-period"]
- dataframe["bb_lowerband-period"]
) / dataframe["bb_middleband-period"]
dataframe["%-close-bb_lower-period"] = (
dataframe["close"] / dataframe["bb_lowerband-period"]
)
return dataframe
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
dataframe['date'] = pd.to_datetime(dataframe['date'])
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs) -> DataFrame:
dataframe['ma'] = ta.SMA(dataframe, timeperiod=10)
dataframe['roc'] = ta.ROC(dataframe, timeperiod=2)
dataframe['macd'], dataframe['macdsignal'], dataframe['macdhist'] = ta.MACD(dataframe['close'], slowperiod=12,
fastperiod=26)
dataframe['momentum'] = ta.MOM(dataframe, timeperiod=4)
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=10)
bollinger = ta.BBANDS(dataframe, timeperiod=20)
dataframe['bb_upperband'] = bollinger['upperband']
dataframe['bb_middleband'] = bollinger['middleband']
dataframe['bb_lowerband'] = bollinger['lowerband']
dataframe['cci'] = ta.CCI(dataframe, timeperiod=20)
dataframe['stoch'] = ta.STOCH(dataframe)['slowk']
dataframe['atr'] = ta.ATR(dataframe, timeperiod=14)
dataframe['obv'] = ta.OBV(dataframe)
# Step 1: Normalize Indicators:
# Why? Normalizing the indicators will make them comparable and allow us to assign weights to them.
# How? We will calculate the z-score of each indicator by subtracting the rolling mean and dividing by the
# rolling standard deviation. This will give us a normalized value that is centered around 0 with a standard
# deviation of 1.
dataframe['normalized_stoch'] = (dataframe['stoch'] - dataframe['stoch'].rolling(window=14).mean()) / dataframe[
'stoch'].rolling(window=14).std()
dataframe['normalized_atr'] = (dataframe['atr'] - dataframe['atr'].rolling(window=14).mean()) / dataframe[
'atr'].rolling(window=14).std()
dataframe['normalized_obv'] = (dataframe['obv'] - dataframe['obv'].rolling(window=14).mean()) / dataframe[
'obv'].rolling(window=14).std()
dataframe['normalized_ma'] = (dataframe['close'] - dataframe['close'].rolling(window=10).mean()) / dataframe[
'close'].rolling(window=10).std()
dataframe['normalized_macd'] = (dataframe['macd'] - dataframe['macd'].rolling(window=26).mean()) / dataframe[
'macd'].rolling(window=26).std()
dataframe['normalized_roc'] = (dataframe['roc'] - dataframe['roc'].rolling(window=2).mean()) / dataframe[
'roc'].rolling(window=2).std()
dataframe['normalized_momentum'] = (dataframe['momentum'] - dataframe['momentum'].rolling(window=4).mean()) / \
dataframe['momentum'].rolling(window=4).std()
dataframe['normalized_rsi'] = (dataframe['rsi'] - dataframe['rsi'].rolling(window=10).mean()) / dataframe[
'rsi'].rolling(window=10).std()
dataframe['normalized_bb_width'] = (dataframe['bb_upperband'] - dataframe['bb_lowerband']).rolling(
window=20).mean() / (dataframe['bb_upperband'] - dataframe['bb_lowerband']).rolling(window=20).std()
dataframe['normalized_cci'] = (dataframe['cci'] - dataframe['cci'].rolling(window=20).mean()) / dataframe[
'cci'].rolling(window=20).std()
# Dynamic Weights (Example: Increase the weight of momentum in a strong trend)
trend_strength = abs(dataframe['ma'] - dataframe['close'])
# Calculate the rolling mean and standard deviation of the trend strength to determine a strong trend
# The threshold is set to 1.5 times the standard deviation above the mean, but can be adjusted as needed
strong_trend_threshold = trend_strength.rolling(window=14).mean() + 1.5 * trend_strength.rolling(
window=14).std()
# Assign a higher weight to momentum if the trend is strong
is_strong_trend = trend_strength > strong_trend_threshold
# Assign the dynamic weights to the dataframe
dataframe['w_momentum'] = np.where(is_strong_trend, self.w3.value * 1.5, self.w3.value)
# Step 2: Calculate aggregate score S
w = [self.w0.value, self.w1.value, self.w2.value, self.w3.value, self.w4.value, self.w5.value,
self.w6.value, self.w7.value, self.w8.value]
dataframe['S'] = w[0] * dataframe['normalized_ma'] + w[1] * dataframe['normalized_macd'] + w[2] * dataframe[
'normalized_roc'] + w[3] * dataframe['normalized_rsi'] + w[4] * \
dataframe['normalized_bb_width'] + w[5] * dataframe['normalized_cci'] + dataframe[
'w_momentum'] * dataframe['normalized_momentum'] + self.w8.value * dataframe[
'normalized_stoch'] + self.w7.value * dataframe['normalized_atr'] + self.w6.value * \
dataframe['normalized_obv']
# Step 3: Market Regime Filter R
# EXPLANATION: If the price is above the upper Bollinger Band, assign a value
# of 1 to R. If the price is below the lower Bollinger Band, assign a value of -1 to R. Otherwise,
# the value R stays 0.
# What's basically happening here is that we are assigning a value of 1 to R when
# the price is in the upper band, -1 when the price is in the lower band, and 0 when the price is in the
# middle band. This is a simple way to determine the market regime based on Bollinger Bands. What is market
# regime? Market regime is the state of the market. It can be trending, ranging, or reversing. So we are
# using Bollinger Bands to determine the market regime. You can use other indicators to determine the market
# regime as well. For example, you can use moving averages, RSI, MACD, etc.
dataframe['R'] = 0
dataframe.loc[(dataframe['close'] > dataframe['bb_middleband']) & (
dataframe['close'] > dataframe['bb_upperband']), 'R'] = 1
dataframe.loc[(dataframe['close'] < dataframe['bb_middleband']) & (
dataframe['close'] < dataframe['bb_lowerband']), 'R'] = -1
# Additional Market Regime Filter based on long-term MA
dataframe['ma_100'] = ta.SMA(dataframe, timeperiod=100)
dataframe['R2'] = np.where(dataframe['close'] > dataframe['ma_100'], 1, -1)
# Step 4: Volatility Adjustment V
# EXPLANATION: Calculate the Bollinger Band width and assign it to V. The Bollinger Band width is the
# difference between the upper and lower Bollinger Bands divided by the middle Bollinger Band. The idea is
# that when the Bollinger Bands are wide, the market is volatile, and when the Bollinger Bands are narrow,
# the market is less volatile. So we are using the Bollinger Band width as a measure of volatility. You can
# use other indicators to measure volatility as well. For example, you can use the ATR (Average True Range)
bb_width = (dataframe['bb_upperband'] - dataframe['bb_lowerband']) / dataframe['bb_middleband']
dataframe['V'] = 1 / bb_width # example, assuming V is inversely proportional to BB width
# Another Volatility Adjustment using ATR
dataframe['V2'] = 1 / dataframe['atr']
# Get Final Target Score to incorporate new calculations
dataframe['T'] = dataframe['S'] * dataframe['R'] * dataframe['V'] * dataframe['R2'] * dataframe['V2']
# Assign the target score T to the AI target column
dataframe['&-target'] = dataframe['T']
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
self.freqai_info = self.config["freqai"]
dataframe = self.freqai.start(dataframe, metadata, self)
# One can define indicators here if needed and add logic to populate_entry_trend and populate_exit_trend
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [
df["do_predict"] == 1,
df['&-target'] > self.threshold_buy.value, #
df['volume'] > 0
]
enter_short_conditions = [
df["do_predict"] == 1,
df['&-target'] < self.threshold_sell.value,
df["volume"] > 0
]
df.loc[
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
] = (1, "long")
df.loc[
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
] = (1, "short")
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
exit_long_conditions = [
df["do_predict"] == 1,
df['&-target'] < self.threshold_sell.value
]
exit_short_conditions = [
df["do_predict"] == 1,
df['&-target'] > self.threshold_buy.value
]
if exit_long_conditions:
df.loc[
reduce(lambda x, y: x & y, exit_long_conditions), ["exit_long", "exit_tag"]
] = (1, "exit_long")
if exit_short_conditions:
df.loc[
reduce(lambda x, y: x & y, exit_short_conditions), ["exit_short", "exit_tag"]
] = (1, "exit_short")
return df