-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdemo.py
73 lines (49 loc) · 2.13 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
from torch import nn
import torch.nn.functional as F
from PIL import Image
from iresnet import iresnet100
import numpy as np
def main():
device='cuda' if torch.cuda.is_available() else 'cpu'
arcface = iresnet100(pretrained=False, fp16=False)
arcface.load_state_dict(torch.load('checkpoints/arcface.pt', map_location='cpu'))
arcface=arcface.to(device)
arcface.eval()
blendface = iresnet100(pretrained=False, fp16=False)
blendface.load_state_dict(torch.load('checkpoints/blendface.pt', map_location='cpu'))
blendface=blendface.to(device)
blendface.eval()
with torch.no_grad():
img_anc=np.array(Image.open('images/anchor.png'))
img_pos=np.array(Image.open('images/positive.png'))
img_neg=np.array(Image.open('images/negative.png'))
img_swp=np.array(Image.open('images/swapped.png'))
img_anc=torch.tensor(img_anc).to(device).permute(2,0,1).unsqueeze(0)/255
img_pos=torch.tensor(img_pos).to(device).permute(2,0,1).unsqueeze(0)/255
img_neg=torch.tensor(img_neg).to(device).permute(2,0,1).unsqueeze(0)/255
img_swp=torch.tensor(img_swp).to(device).permute(2,0,1).unsqueeze(0)/255
img_anc=(img_anc-0.5)/0.5
img_pos=(img_pos-0.5)/0.5
img_neg=(img_neg-0.5)/0.5
img_swp=(img_swp-0.5)/0.5
#arcface
vec_anc=F.normalize(arcface(img_anc))
vec_pos=F.normalize(arcface(img_pos))
vec_neg=F.normalize(arcface(img_neg))
vec_swp=F.normalize(arcface(img_swp))
sim_pos=nn.CosineSimilarity()(vec_anc,vec_pos).item()
sim_neg=nn.CosineSimilarity()(vec_anc,vec_neg).item()
sim_swp=nn.CosineSimilarity()(vec_anc,vec_swp).item()
print(f'ArcFace| Positive: {sim_pos:0.4f}, Negative: {sim_neg:0.4f}, Swapped: {sim_swp:0.4f}')
#blendface
vec_anc=F.normalize(blendface(img_anc))
vec_pos=F.normalize(blendface(img_pos))
vec_neg=F.normalize(blendface(img_neg))
vec_swp=F.normalize(blendface(img_swp))
sim_pos=nn.CosineSimilarity()(vec_anc,vec_pos).item()
sim_neg=nn.CosineSimilarity()(vec_anc,vec_neg).item()
sim_swp=nn.CosineSimilarity()(vec_anc,vec_swp).item()
print(f'BlendFace| Positive: {sim_pos:0.4f}, Negative: {sim_neg:0.4f}, Swapped: {sim_swp:0.4f}')
if __name__=='__main__':
main()