|[click-prediction](http://nbviewer.jupyter.org/github/marcotav/deep-learning/blob/master/transfer-learning/notebooks/transfer-learning.ipynb) | Many ads are actually sold on a "pay-per-click" (PPC) basis, meaning the company only pays for ad clicks, not ad views. Thus your optimal approach (as a search engine) is actually to choose an ad based on "expected value", meaning the price of a click times the likelihood that the ad will be clicked [...] In order for you to maximize expected value, you therefore need to accurately predict the likelihood that a given ad will be clicked, also known as "click-through rate" (CTR). In this project I will predict the likelihood that a given online ad will be clicked.|
0 commit comments