-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNovakovic_gmea.Rmd
420 lines (357 loc) · 15.3 KB
/
Novakovic_gmea.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
---
title: "Novakovic: Gene Methylation Enrichment Analysis"
author: "IVF meth meta-analysis group"
date: "`r Sys.Date()`"
output:
html_document:
toc: yes
toc_float: true
code_folding: hide
fig_width: 7
fig_height: 7
theme: cosmo
---
## Introduction
Previously, Mandhri and I analysed the B-PROOF 450K data, trying to understand
whether vitamin supplementation caused changes in gene methylation.
We used Limma and some basic analyses, which showed no specific probes with FDR<0.05,
nor any DMRs.
In this analysis we will use the principle of Gene Set Enrichment Analysis, applying it
to many probes belonging to genes.
If the probes are trending in concert, then we can make some judgement about the
enrichment of those probes.
The statistical test used is the Wilcox test, which can be applied to competitive
or self contained test types.
```{r,libs}
library("parallel")
library("dplyr")
library("kableExtra")
library("eulerr")
library("mitch")
library("tictoc")
source("meth_functions.R")
CORES= detectCores()/2
```
## Get array annotation data
```{r,anno}
anno <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
myann <- data.frame(anno[,c("UCSC_RefGene_Name","Regulatory_Feature_Group","Islands_Name","Relation_to_Island")])
promoters <- grep("Prom",myann$Regulatory_Feature_Group)
```
## Load Novakovic data
```{r,load}
nat_vs_fh <- readRDS("novakovic_nat_vs_fh.rds")
fh_vs_fz <- readRDS("novakovic_fh_vs_fz.rds")
GIFT_vs_FX <- readRDS("novakovic_GIFT_vs_FX.rds")
nat_vs_ART <- readRDS("novakovic_nat_vs_ART.rds")
nat_vs_FX <- readRDS("novakovic_nat_vs_FX.rds")
nat_vs_fz <- readRDS("novakovic_nat_vs_fz.rds")
nat_vs_GIFT <- readRDS("novakovic_nat_vs_GIFT.rds")
if ( ! file.exists("ReactomePathways.gmt") ) {
download.file("https://reactome.org/download/current/ReactomePathways.gmt.zip",
destfile="ReactomePathways.gmt.zip")
unzip("ReactomePathways.gmt.zip")
}
file.info("ReactomePathways.gmt")
genesets <- gmt_import("ReactomePathways.gmt")
length(genesets)
```
## Nat vs fh
```{r,nat_vs_fh}
dm <- nat_vs_fh$dma
head(dm,50) %>% kbl(caption = "Top significant genes with limma") %>% kable_paper("hover", full_width = F)
dm <- dm[,c("UCSC_RefGene_Name","t")]
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res,file="novakovic_gmeawg_nat_vs_fh.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets, priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeawg_mitch_nat_vs_fh.html",overwrite=FALSE)
# Promoter
dm <- nat_vs_fh$dma
dm <- dm[grep("Promoter_Associated",dm$Regulatory_Feature_Group),]
dm <- dm[,c("UCSC_RefGene_Name","t")]
head(dm,50) %>% kbl(caption = "Top significant promoters with limma") %>% kable_paper("hover", full_width = F)
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res ,file="novakovic_gmeapr_nat_vs_fh.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets,priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch (promoter only)") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeapr_mitch_nat_vs_fh.html",overwrite=FALSE)
rm(nat_vs_fh)
```
## fh vs fz
```{r,fh_vs_fz}
dm <- fh_vs_fz$dma
head(dm,50) %>% kbl(caption = "Top significant genes with limma") %>% kable_paper("hover", full_width = F)
dm <- dm[,c("UCSC_RefGene_Name","t")]
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res,file="novakovic_gmeawg_fh_vs_fz.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets, priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeawg_mitch_fh_vs_fz.html",overwrite=FALSE)
# Promoter
dm <- fh_vs_fz$dma
dm <- dm[grep("Promoter_Associated",dm$Regulatory_Feature_Group),]
dm <- dm[,c("UCSC_RefGene_Name","t")]
head(dm,50) %>% kbl(caption = "Top significant promoters with limma") %>% kable_paper("hover", full_width = F)
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res ,file="novakovic_gmeapr_fh_vs_fz.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets,priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch (promoter only)") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeapr_mitch_fh_vs_fz.html",overwrite=FALSE)
rm(fh_vs_fz)
```
## GIFT_vs_FX
```{r,GIFT_vs_FX}
dm <- GIFT_vs_FX$dma
head(dm,50) %>% kbl(caption = "Top significant genes with limma") %>% kable_paper("hover", full_width = F)
dm <- dm[,c("UCSC_RefGene_Name","t")]
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res,file="novakovic_gmeawg_GIFT_vs_FX.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets, priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeawg_mitch_GIFT_vs_FX.html",overwrite=FALSE)
# Promoter
dm <- GIFT_vs_FX$dma
dm <- dm[grep("Promoter_Associated",dm$Regulatory_Feature_Group),]
dm <- dm[,c("UCSC_RefGene_Name","t")]
head(dm,50) %>% kbl(caption = "Top significant promoters with limma") %>% kable_paper("hover", full_width = F)
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res ,file="novakovic_gmeapr_GIFT_vs_FX.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets,priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch (promoter only)") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeapr_mitch_GIFT_vs_FX.html",overwrite=TRUE)
rm(GIFT_vs_FX)
```
## nat vs ART
```{r,nat_vs_ART}
dm <- nat_vs_ART$dma
head(dm,50) %>% kbl(caption = "Top significant genes with limma") %>% kable_paper("hover", full_width = F)
dm <- dm[,c("UCSC_RefGene_Name","t")]
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res,file="novakovic_gmeawg_nat_vs_ART.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets, priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeawg_mitch_nat_vs_ART.html",overwrite=FALSE)
# Promoter
dm <- nat_vs_ART$dma
dm <- dm[grep("Promoter_Associated",dm$Regulatory_Feature_Group),]
dm <- dm[,c("UCSC_RefGene_Name","t")]
head(dm,50) %>% kbl(caption = "Top significant promoters with limma") %>% kable_paper("hover", full_width = F)
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res ,file="novakovic_gmeapr_nat_vs_ART.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets,priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch (promoter only)") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeapr_mitch_nat_vs_ART.html",overwrite=FALSE)
rm(nat_vs_ART)
```
## nat vs FX
```{r,nat_vs_FX}
dm <- nat_vs_FX$dma
head(dm,50) %>% kbl(caption = "Top significant genes with limma") %>% kable_paper("hover", full_width = F)
dm <- dm[,c("UCSC_RefGene_Name","t")]
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res,file="novakovic_gmeawg_nat_vs_FX.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets, priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeawg_mitch_nat_vs_FX.html",overwrite=FALSE)
# Promoter
dm <- nat_vs_FX$dma
dm <- dm[grep("Promoter_Associated",dm$Regulatory_Feature_Group),]
dm <- dm[,c("UCSC_RefGene_Name","t")]
head(dm,50) %>% kbl(caption = "Top significant promoters with limma") %>% kable_paper("hover", full_width = F)
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res ,file="novakovic_gmeapr_nat_vs_FX.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets,priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch (promoter only)") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeapr_mitch_nat_vs_FX.html",overwrite=FALSE)
rm(nat_vs_FX)
```
## nat vs fz
```{r,nat_vs_fz}
dm <- nat_vs_fz$dma
head(dm,50) %>% kbl(caption = "Top significant genes with limma") %>% kable_paper("hover", full_width = F)
dm <- dm[,c("UCSC_RefGene_Name","t")]
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res,file="novakovic_gmeawg_nat_vs_fz.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets, priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeawg_mitch_nat_vs_fz.html",overwrite=FALSE)
# Promoter
dm <- nat_vs_fz$dma
dm <- dm[grep("Promoter_Associated",dm$Regulatory_Feature_Group),]
dm <- dm[,c("UCSC_RefGene_Name","t")]
head(dm,50) %>% kbl(caption = "Top significant promoters with limma") %>% kable_paper("hover", full_width = F)
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res ,file="novakovic_gmeapr_nat_vs_fz.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets,priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch (promoter only)") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeapr_mitch_nat_vs_fz.html",overwrite=FALSE)
rm(nat_vs_fz)
```
## nat vs GIFT
```{r,nat_vs_GIFT}
dm <- nat_vs_GIFT$dma
head(dm,50) %>% kbl(caption = "Top significant genes with limma") %>% kable_paper("hover", full_width = F)
dm <- dm[,c("UCSC_RefGene_Name","t")]
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res,file="novakovic_gmeawg_nat_vs_GIFT.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets, priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeawg_mitch_nat_vs_GIFT.html",overwrite=FALSE)
# Promoter
dm <- nat_vs_GIFT$dma
dm <- dm[grep("Promoter_Associated",dm$Regulatory_Feature_Group),]
dm <- dm[,c("UCSC_RefGene_Name","t")]
head(dm,50) %>% kbl(caption = "Top significant promoters with limma") %>% kable_paper("hover", full_width = F)
hist(dm$t,breaks=seq(from=-10,to=10,by=1))
tic() ; gmea <- calc_sc(dm) ; time2 <- toc()
df <- gmea[[1]]
res <- gmea[[2]]
write.table(res ,file="novakovic_gmeapr_nat_vs_GIFT.tsv")
head(res,50) %>% kbl(caption = "Top significant genes with GMEA") %>% kable_paper("hover", full_width = F)
gmea_volc(res)
gmea_barplot(res)
gmea_probe_bias(res)
dmscore <- data.frame( res$median * res$sig)
rownames(dmscore) <- rownames(res)
colnames(dmscore) <- "metric"
mres <- mitch_calc(x=dmscore, genesets=genesets,priority="effect")
head(mres$enrichment_result,20) %>% kbl(caption = "Top enriched gene sets with GMEA-Mitch (promoter only)") %>% kable_paper("hover", full_width = F)
#mitch_report(mres,outfile="gmeapr_mitch_nat_vs_GIFT.html",overwrite=FALSE)
rm(nat_vs_GIFT)
```
## Session Information
For reproducibility.
```{r,sessioninfo}
sessionInfo()
```