-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcenterline_process_function.py
408 lines (317 loc) · 11.1 KB
/
centerline_process_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 21 19:40:31 2019
@author: Martin Lemay
"""
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pylab as pl
from scipy import interpolate
from scipy.interpolate import splprep, splev
from scipy.signal import savgol_filter
def import_data(filepath, filter_raw = 1, start = -999999, end = 999999):
dataset = {}
fin = open(filepath, 'r')
header = fin.readline().split(';')
for l in fin:
line = l.split(';')
if line[0] not in dataset.keys():
dataset[line[0]] = [[] for i in range(len(line)-1)]
for i in range(len(line)-1):
if float(line[filter_raw+1]) >= start and float(line[filter_raw+1]) <= end:
if line[1+i].endswith('\n') or line[1+i].endswith(' '):
value = float(line[i+1][:-1])
else:
value = float(line[i+1])
dataset[line[0]][i] += [value]
fin.close()
return dataset, header
# create the dataset as Flumy csv file
def create_dataset_from_xy(X, Y):
data = np.zeros((X.size, 5))
s = 0
x_prev, y_prev = 0, 0
for i, x in enumerate(X):
y = Y[i]
data[i, 1] = x
data[i, 2] = y
if i == 0:
data[i, 0] = 0 # curvilinear abscissa
else:
# curvilinear abscissa
s += distance((x, y), (x_prev, y_prev))
data[i, 0] = s
# curvature commputation
if i == 0 or i == X.size-1:
data[i, 4] = 0 # curvature
else:
i_min = max(i-1, 0)
i_max = min(i+1, X.size-1)
pt1 = (X[i_min], Y[i_min])
pt3 = (X[i_max], Y[i_max])
pt2 = (x, y)
data[i, 4] = compute_curvature(pt1, pt2, pt3)
x_prev, y_prev = x, y
dataset = pd.DataFrame(data, columns=("Curv_abscissa", "Cart_abscissa", "Cart_ordinate",
"Elevation", "Curvature"))
return dataset
def filter_dataset(filepath, keys, raw=0, start=-999999, end=999999):
fin = open(filepath, 'r')
fout = open(filepath[:-4] + "_filtered.csv", 'w')
head = True
for line in fin:
if head:
fout.write(line)
head = False
continue
val = line.split(';')
if keys and val[0] in keys:
if float(val[raw+1]) >= start and float(val[raw+1]) <= end:
fout.write(line)
fin.close()
fout.close()
return True
def points2coords(pts):
coords = np.zeros((len(pts[0]), len(pts)))
for i, pt in enumerate(pts):
for j in range(len(pt)):
coords[j, i] = pt[j]
return coords
def clpoints2coords(cl_pts):
coords = np.zeros((len(cl_pts[0].pt), len(cl_pts)))
for i, cl_pt in enumerate(cl_pts):
for j in range(len(cl_pt)):
coords[j, i] = cl_pt.pt[j]
return coords
def coords2points(coords):
pts = []
if coords.shape[0] == 2 or coords.shape[0] == 3:
dim = coords.shape[0]
if dim == 2:
for x,y in zip(coords[0], coords[1]):
pts += [np.array([x, y])]
else:
for x,y,z in zip(coords[0], coords[1], coords[2]):
pts += [np.array([x, y, z])]
elif coords.shape[1] == 2 or coords.shape[1] == 3:
dim = coords.shape[1]
for coord in coords:
if dim == 2:
pts += [coord]
else:
pts += [coord]
else:
print("Error: bad coordinates format")
return pts
def compute_colinear(pt1, pt2, k):
x = pt1[0] + k * (pt2[0] - pt1[0])
y = pt1[1] + k * (pt2[1] - pt1[1])
return (x, y)
def distance(pt1, pt2):
if (type(pt1) == list) | (type(pt1) == tuple):
pt1 = np.array(pt1)
if (type(pt2) == list) | (type(pt2) == tuple):
pt2 = np.array(pt2)
while pt1.size != pt2.size:
if pt1.size > pt2.size:
pt2 = np.append(pt2, 0.)
elif pt2.size > pt1.size:
pt1 = np.append(pt1, 0.)
d = np.linalg.norm(pt2 - pt1)
return round(d, 4)
def perp(vec) :
vec_new = np.empty_like(vec)
vec_new[0] = -vec[1]
vec_new[1] = vec[0]
return vec_new
def seg_intersect(pt11,pt12, pt21,pt22) :
da = pt12-pt11
db = pt22-pt21
dp = pt11-pt21
dap = perp(da)
denom = np.dot( dap, db)
num = np.dot( dap, dp )
if denom.astype(float) != 0:
return (num / denom.astype(float))*db + pt21
else:
return np.zeros(2, dtype=bool)
def project_point(pt_new0, pt_new1, pt_new2, pt0, pt1, pt2):
# vector along which to project pt_new1
pt_new12 = (pt_new2 - pt_new0)
pt_new12 = pt_new1 + perp(pt_new12)
# projection onto the segment pt0, pt1
pt_proj0 = seg_intersect(pt_new1,pt_new12, pt0,pt1)
# projection onto the segment pt2, pt1
pt_proj2 = seg_intersect(pt_new1,pt_new12, pt2,pt1)
# keep the closer pojected point when they exist
if pt_proj0.any() and pt_proj2.any():
d = distance(pt_new1, pt_proj0) - distance(pt_new1, pt_proj2)
if d < 0:
j2 = -1
pt_proj = pt_proj0
else:
j2 = 1
pt_proj = pt_proj2
elif pt_proj0.any():
j2 = -1
pt_proj = pt_proj0
elif pt_proj2.any():
j2 = 1
pt_proj = pt_proj2
else:
pt_proj = pt1
j2 = 0
print("WARNING: Error when projecting the point to the former centerline")
return pt_proj, j2
def smooth_trajec(l_pt, input_ages, output_ages, window=2, resample_curve=False):
l_pt_interp = l_pt
dim = 2
y_interp = []
for i in range(dim):
y = []
for pt in l_pt:
y += [pt[i]]
y_interp += [savgol_filter(y, 9, window)]
if resample_curve:
tck = interpolate.splrep(input_ages, y_interp[i], s=0)
y_interp[i] = interpolate.splev(output_ages, tck)
l_pt_interp = coords2points(np.array(y_interp))
return l_pt_interp
def get_MP(dir_trans = np.array((1., 0.)), ref = np.array((1., 0.))):
dir_trans /= np.linalg.norm(dir_trans)
ref /= np.linalg.norm(ref)
if (np.dot(dir_trans, ref) < 0.):
dir_trans *= -1.
cos = np.dot(dir_trans, ref)
teta = np.arccos(cos)
det = np.linalg.det((dir_trans, ref))
if det < 0:
teta = np.pi-teta
sin = np.sin(teta)
MP = np.array([[cos, sin],
[-sin, cos]])
return MP
def compute_point_displacements(l_pt, dir_trans = np.array((1., 0.)), ref = np.array((1., 0.))):
# compute change-of-basis matrix
MP = get_MP(dir_trans, ref)
# compute displacement
local_disp = np.nan*np.zeros((len(l_pt)-1, 4)) # dX, dY, dZ, dMig
whole_disp = np.nan*np.zeros(4) # deltaX, deltaY, deltaZ, deltaMig
pt1 = l_pt[0]
for i, pt2 in enumerate(l_pt):
if i > 0:
disp = pt2 - pt1
disp2 = np.dot(MP, disp)
local_disp[i-1, 0] = disp2[0]
local_disp[i-1, 1] = disp2[1]
if len(pt1) > 2:
local_disp[i-1, 2] = pt2[2] - pt1[2]
else:
local_disp[i-1, 2] = 0
local_disp[i-1, 3] = np.linalg.norm(disp2)
pt1 = pt2
pt0 = l_pt[0]
pt1 = l_pt[-1]
disp = pt1 - pt0
disp2 = np.dot(MP, disp)
whole_disp[0] = disp2[0]
whole_disp[1] = disp2[1]
if len(pt1) > 2:
whole_disp[2] = pt1[2] - pt0[2]
else:
whole_disp[2] = 0
whole_disp[3] = np.linalg.norm(disp2)
return local_disp, whole_disp
def build_distance_matrix(points):
n_bend = len(points)
nb = 0
for elt in points:
if len(elt) > nb:
nb = len(elt)
D = np.inf*np.ones((n_bend-1, nb, nb))
for i in range(1, n_bend):
for j in range(nb):
for k in range(nb):
if i > 0:
try:
if points[i][j] and points[i-1][k]:
d = distance(points[i][j], points[i-1][k])
else:
d = np.inf
except IndexError:
continue
else:
D[i-1][j][k] = d
return D
def smooth_path(X, Y, x):
params = np.polyfit(X, Y, deg=2)
y_smooth = np.polyval(params, x)
return y_smooth
def compute_sinuosity(data):
return abs(data[-1][0] - data[0][0]) / distance(data[-1][1:3], data[0][1:3])
def compute_amplitude(pt1, apex, pt3, kind = 'middle'):
if kind == 'perpendicular':
pt = project_perpendicularly(apex, pt1, pt3)
else:
pt = compute_colinear(pt1, pt3, 0.5)
amplitude = distance(pt, apex)
return round(amplitude, 4)
def project_perpendicularly(pt, line_pt1, line_pt2):
k = (((line_pt2[0] - line_pt1[0]) * (pt[0] - line_pt1[0]) +
(line_pt2[1] - line_pt1[1]) * (pt[1] - line_pt1[1]))
/ ((line_pt2[0] - line_pt1[0])**2 + (line_pt2[1] - line_pt1[1])**2))
return compute_colinear(line_pt1, line_pt2, k)
def compute_Leopold_parameters(dataset, meand1, meand2, meand3):
pt_apex1 = (dataset[meand1[0]]["Cart_abscissa"][meand1[1]], dataset[meand1[0]]["Cart_ordinate"][meand1[1]])
pt_apex2 = (dataset[meand2[0]]["Cart_abscissa"][meand2[1]], dataset[meand2[0]]["Cart_ordinate"][meand2[1]])
pt_apex3 = (dataset[meand3[0]]["Cart_abscissa"][meand3[1]], dataset[meand3[0]]["Cart_ordinate"][meand3[1]])
k = (((pt_apex3[0] - pt_apex1[0]) * (pt_apex2[0] - pt_apex1[0]) +
(pt_apex3[1] - pt_apex1[1]) * (pt_apex2[1] - pt_apex1[1])) /
((pt_apex3[0] - pt_apex1[0])**2 + (pt_apex3[1] - pt_apex1[1])**2))
pt = compute_colinear(pt_apex1, pt_apex3, k)
ampl = distance(pt, pt_apex2)
wavelength = distance(pt_apex1, pt_apex3)
return wavelength, ampl
def compute_curvature(pt1, pt2, pt3):
x1, y1 = pt1
x2, y2 = pt2
x3, y3 = pt3
ds12 = distance(pt1, pt2)
ds23 = distance(pt2, pt3)
ds13 = ds12 + ds23
dxds = (x3 - x1) / (ds13)
dyds = (y3 - y1) / (ds13)
d2xds2 = 2 * ( ds12*(x3-x2) - ds23*(x2-x1) ) / (ds12*ds23*ds13)
d2yds2 = 2 * ( ds12*(y3-y2) - ds23*(y2-y1) ) / (ds12*ds23*ds13)
curv2 = -(dxds*d2yds2 - dyds*d2xds2) / pow( pow(dxds, 2) + pow(dyds, 2) , 3./2.)
return curv2
def resample_centerline(x, y, nb_pts=False):
tck, u = splprep([x, y], s=0)
if nb_pts:
u = np.linspace(0., 1., nb_pts)
return splev(u, tck)
def smooth_centerline(array, window):
return savgol_filter(array, window, polyorder=3)
def sort_key(labels, reverse=False):
labels_int = [eval(val) for val in labels]
labels_int.sort(reverse=reverse)
labels2 = [str(val) for val in labels_int]
return labels2
def barycenter(l_val, l_pond):
if len(l_val) != len(l_pond):
print("Error: the length of the lists of values and ponderators must be the same to compute the barycenter")
return 0
mean = 0
for val, pond in zip(l_val, l_pond):
mean += val * pond
return mean / sum(l_pond)
def get_keys_from_to(all_keys, key_min = 0, key_max = 999999, sort_reverse=False):
lkeys = []
for key in all_keys:
if int(key) <= int(key_max) and int(key) >= int(key_min):
lkeys += [key]
if len(lkeys) > 1:
lkeys = sort_key(lkeys, sort_reverse)
return [str(key) for key in lkeys]