-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSTM.py
149 lines (124 loc) · 4.38 KB
/
LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from transition import BrownianMotion
from utility import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import *
# Model
class LSTM(nn.Module):
def __init__(self, in_channels=5, num_classes=1, fc_layer_sizes=[64,128], lstm_hidden_size=20):
super(LSTM, self).__init__()
# fc layers
self.fc_layer1 = self._fc_layer_set(in_channels, fc_layer_sizes[0])
self.fc_layer2 = self._fc_layer_set(fc_layer_sizes[0], fc_layer_sizes[1])
flattened_size = fc_layer_sizes[1]
# LSTM layers
self.lstm_hidden_size = lstm_hidden_size
self.lstm_cell = nn.LSTMCell(flattened_size, lstm_hidden_size)
self.i2o = nn.Linear(flattened_size + lstm_hidden_size, lstm_hidden_size)
self.drop=nn.Dropout(p=0.5)
# final fc layer
self.fc_final = nn.Linear(lstm_hidden_size, num_classes)
# Block of fc layers
# Architecture: (fc, batchnorm, relu, dropout)
def _fc_layer_set(self, in_c, out_c):
# first block
fc_layer = nn.Sequential(
nn.Linear(in_c, out_c),
# nn.BatchNorm1d(num_features=out_c),
nn.LeakyReLU(),
nn.Dropout(p=0.5)
)
return fc_layer
# Use fc to extract features
def _fc(self,x):
out = self.fc_layer1(x)
out = self.fc_layer2(out)
# out = out.view(out.size(0), -1) # Flatten it out
return out
# Use LSTM to look at extracted features from CNN
def _lstm(self, input, hidden_and_cell):
hidden = hidden_and_cell[0]
combined = torch.cat((input, hidden), 1)
hidden_and_cell = self.lstm_cell(input, hidden_and_cell)
combined = self.drop(combined)
output = self.i2o(combined)
return output, hidden_and_cell
def initHidden(self, input):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = input.size(0)
return (torch.zeros(batch_size, self.lstm_hidden_size).to(device), torch.zeros(batch_size, self.lstm_hidden_size).to(device))
def forward(self, x):
lstm_hidden = self.initHidden(x)
for i in range(x.size(1)): # lstm loop
ft = self._fc(x[:,i]) # extract state features with fc
out, lstm_hidden = self._lstm(ft, lstm_hidden)
# fully-connected layers
out = self.fc_final(out)
return out
# Training
def train():
""" Train the model
"""
# Use cpu or gpu acceleration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# larger batch size can be used for gpu (faster training)
if device == torch.device('cuda'):
batch_size = 64
else:
batch_size = 8
# Create model
model = LSTM()
# print(lstm)
# print(len(list(lstm.parameters())))
# for i in range(len(list(lstm.parameters()))):
# print(list(lstm.parameters())[i].size())
# # Generate data
# data = gen_data()
# Read real data
data = read_data()
# Create dataloaders
lookback = 5
train_set, test_set = data_load(data, lookback)
train_set = SimDataset(train_set)
test_set = SimDataset(test_set)
train_loader = DataLoader(
train_set,
batch_size=batch_size,
num_workers=1,
shuffle=False
)
test_loader = DataLoader(
test_set,
batch_size=batch_size,
num_workers=1,
shuffle=False
)
# Train parameters
loss_fn = torch.nn.MSELoss()
optimiser = torch.optim.Adam(model.parameters(), lr=0.001)
num_epochs = 10
hist = np.zeros(num_epochs)
# Train model
for t in range(num_epochs):
for i, sample in enumerate(train_loader):
model.train() # set mode to training, for dropout layers
x_train = sample[:, :-1, :]
y_train = sample[:, -1, 1] # stock price in the end
# Forward pass
y_train_pred = model(x_train).view(-1)
loss = loss_fn(y_train_pred, y_train)
# Zero out gradient, else they will accumulate between epochs
optimiser.zero_grad()
# Backward pass
loss.backward()
# Update parameters
optimiser.step()
if t % 1 == 0 and t !=0:
print("Epoch ", t, "MSE: ", loss.item())
hist[t] = loss.item()
# Testing
def test():
pass
if __name__ == "__main__":
train()